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Braids

1. Introduction

Classical braid group can be defined as the fundamental group of

configuration space or as the mapping class group of a disc with n
punctures. Being a natural object, braids admit generalizations in

various directions. Also there are special types of braids defined

among all braids by specific properties.
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Two geometric braids with the same endpoints are called

homotopic if one can be deformed to the other by homotopies of

the braid strings which fix the endpoints, so that different strings

do not intersect. If two geometric braids are isotopic, they are

evidently homotopic.
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E. Artin posed the question of whether the notions of isotopy and

homotopy of braids are different or the same. Namely he wrote:

”Assume that two braids can be deformed into each other by a

deformation of the most general nature including self intersection of

each string but avoiding intersection of two different strings. Are

they isotopic?"
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Deborah Goldsmith gave an example of a braid which is not trivial

in the isotopic sense, but is homotopic to the trivial braid. At first

she expressed this braid and homotopy process by the pictures. We

give these pictures in Figure 1.
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Figure: 1
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This braid is expressed in the canonical generators of the classical

braid group in the following form:

�1�
2
2�

2
1�

�2
2 ��2

1 �2
2�

�2
1 ��2

2 �1.
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2. Artin presentation for braid group

Artin presentation of the braid group Brn has generators �i ,
i = 1, ..., n � 1 and relations:

(
�i�j = �j �i , if |i � j | > 1,

�i�i+1�i = �i+1�i�i+1

V. Vershinin Braids



3. Presentaion of the pure braid group

Define the elements ai ,j , 1  i < j  n, of Brn by:

ai ,j = �j�1...�i+1�
2
i �

�1
i+1...�

�1
j�1.
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Geometrically generator of this type is depicted as follows

��

�

�
��

H
HH

HH

�
�
H

H
H
H

1 2 j � 1 j n

... ...

Figure: Generator a1,j
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They satisfy the Burau relations:

ai ,jak,l = ak,lai ,j for i < j < k < l and i < k < l < j ,

ai ,jai ,kaj ,k = ai ,kaj ,kai ,j for i < j < k ,

ai ,kaj ,kai ,j = aj ,kai ,jai ,k for i < j < k ,

ai ,kaj ,kaj ,la
�1
j ,k = aj ,kaj ,la

�1
j ,k ai ,k for i < j < k < l .

(1)

W. Burau proved that this gives a presentation of the pure braid

group Pn.
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4. Reduced free group

For elements a, b of arbitrary group G we will use the following

notations

ab = b�1ab, [a, b] = a�1b�1ab.
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Let Fn = F (x1, . . . , xn) be the free group on generators x1, . . . , xn.
We denote by Kn the quotient group of Fn by the relations

[xi , x
g
i ] = 1, i = 1, . . . , n,

where g is an arbitrary element of Fn. The group Kn is called the

reduced free group.
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It is the quotient group of the free group obtained by adding

relations which express that each xi commutes with all of its

conjugates.
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This group can be characterized also the following way. Let Xi be

the normal subgroup of Fn generated by xi and let [Xi ] be the

commutator subgroup of Xi . Then Nn = [X1] . . . [Xn] is also the

normal subgroup of Fn and Kn is the quotient group Fn/Nn.
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This group was introduced by J. Milnor and studied by Habegger &

Lin, F. Cohen and F. Cohen & Jie Wu.
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5. Homotopy braid group

Recall that the homotopy braid group bBn is the quotient of the

braid group Bn by the relations

[aik , a
g
ik ] = 1, where g 2 ha1k , a2k , . . . , ak�1,ki, 1  i < k  n.
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Let us denote by � the canonical epimorphism from the standard

braid group to the homotopy braid group

� : Bn ! bBn.
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The quotient of the pure braid group Pn by the same relations gives

us the pure homotopy braid group bPn and from the standard short

exact sequence for Bn we have the following short exact sequence

1 �! bPn �! bBn �! Sn �! 1,

where Sn is the symmetric group.
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The group bPn has the decomposition bPn = bUn o bPn�1, where bUn is

the quotient of the free group Un = ha1n, a2n, . . . , an�1,ni of rank

n � 1 by the relations

[ain, a
g
in] = 1, where g 2 Un, 1  i < k  n.
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Note, that bUn is isomorphic to Kn�1. In particular, bU2 is isomorphic

to the infinite cyclic group and bU3 is the quotient of

U3 = ha13, a23i by the relations

a13 · a�1
23 a13a23 = a�1

23 a13a23 · a13,

a23 · a�1
13 a23a13 = a�1

13 a23a13 · a23.
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The canonical Artin monomorphism

⌫n : Bn ,! AutFn

induces a monomorphism

⌫̂n : bBn ! AutKn.

(Cohen and Wu ).
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Theorem (Habegger and Lin)

Kn is a finitely generated nilpotent group of class n.
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6. Linearity

6.1. Existence

Recall that a group G is called linear if it has a faithful

representation into the general linear group GLm(k) for some m
and a field k .
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Theorem

The homotopy braid group bBn is linear for all n � 2. Moreover, for

every n � 2 there is a natural m such that there exists a faithful

representation

bBn �! GLm(Z).
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Proof. The reduced free group Kn, n � 2 is nilpotent. Finitely

generated nilpotent groups are polycyclic and hence they are

represented by integer matrices as was proved by L.Auslender and

R.G.Swan. Also the holomorph of every polycyclic group has a

faithful representation into GLm(Z) for some m. Hence, the

holomorph Hol(Kn) has a faithful representation into GLm(Z) for

some m. And Hol(Kn) contains Aut(Kn) as a subgroup and as bBn

is embedded into Aut(Kn) there exists a monomorphism

bBn �! GLm(Z). ⇤
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6.2. Homotopy braids and the Burau representation

It is interesting to find a faithful linear representation of bBn

explicitly. For example, is it possible to do with the help of the

Burau representation?
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Let

⇢B : Bn �! GL(Wn)

be the Burau representation of Bn, where Wn is a free

Z[t±1
]-module of rank n with the basis w1,w2, . . . ,wn.
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Let n = 3. In this case the automorphisms ⇢B(�i ), i = 1, 2, of

module W3 act by the rule

�1 :

8
<

:

w1 7�! (1 � t)w1 + tw2,
w2 7�! w1,
w3 7�! w3,

�2 :

8
<

:

w1 7�! w1,
w2 7�! (1 � t)w2 + tw3,
w3 7�! w2,

where we write for simplicity �i instead of ⇢B(�i ).
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Let us find the action of the generators of P3 on the module W3.

Recall, that P3 = U3 o U2, where U2 is the infinite cyclic group

with the generator a12 = �2
1, U3 is the free group of rank 2 with

the free generators

a13 = �2�
2
1�

�1
2 , a23 = �2

2.
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These elements define the following automorphisms of W3

a12 :

8
<

:

w1 7�! (1 � t + t2)w1 + t(1 � t)w2,
w2 7�! (1 � t)w1 + tw2,
w3 7�! w3,

(2)
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a13 :

8
<

:

w1 7�! (1 � t + t2)w1 + t(1 � t)w3,
w2 7�! (1 � t)2w1 + w2 � (1 � t)2w3,
w3 7�! (1 � t)w1 + tw3,

(3)
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a23 :

8
<

:

w1 7�! w1,
w2 7�! (1 � t + t2)w2 + t(1 � t)w3,
w3 7�! (1 � t)w2 + tw3,

(4)
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a�1
23 :

8
<

:

w1 7�! w1,
w2 7�! t�1w2 + (1 � t�1

)w3,
w3 7�! t�1

(1 � t�1
)w2 + (1 � t�1

+ t�2
)w3.

(5)
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Let us denote by b⇢B the representation (if it exists)

b⇢B : bBn �! GL(Wn)

such that

⇢B = b⇢B � � : Bn ! GL(Wn). (6)

V. Vershinin Braids



Proposition

For n = 3 the representation b⇢B such that the condition (6) holds

exists only if we consider the specialization of the Burau

representation with t = 1. In this case b⇢B is trivial on bP3. Hence,

the image b⇢B( bB3) is isomorphic to the symmetric group S3.
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Proof. To obtain a representation b⇢B( bB3) we must have the

following relations among the automorphisms ai ,j (2)-(4) of W3:

[a13, a
a23
13 ] = 1, [a23, a

a13
23 ] = 1,

which are equivalent to the following relations

a13a
a23
13 = aa23

13 a13, a23a
a13
23 = aa13

23 a23.
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From the definitions of automorphisms (2)-(5) we obtain

a�1
23 a13a23 :

8
<

:

w1 7�! (1 � t + t2)w1 + t(1 � t)2w2 + t2(1 � t)w3,
w2 7�! w2,
w3 7�! t�1

(1 � t)w1 � t�1
(1 � t)2w2 + tw3.

V. Vershinin Braids



a13a
a23
13 :

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

w1 7�! (2 � 4t + 4t2 � 2t3 + t4)w1+

(1 � t)2(�1 � t2 + t3)w2+

t2(1 � t)(2 � t + t2)w3,
w2 7�! (1 � t)2(�t�1

+ 2 � t + t2)w1+

[(1 � t)4(t + t�1
) + 1]w2+

t(1 � t)2(�1 + t � t2)w3,
w3 7�! (1 � t)(2 � t + t2)w1+

(1 � t)2[�1 + t � t2]w2+

+t2(2 � 2t + t2)w3.

V. Vershinin Braids



aa23
13 a13 :

8
>>>><

>>>>:

w1 7�! (1 � t + 2t3 � 2t4 + t5)w1 + t(1 � t)2w2+

+t(1 � t)(1 � 2t + 5t2 � 3t3 + t4)w3,
w2 7�! (1 � t)2w1 + w2 � (1 � t)2w3,
w3 7�! (1 � t)(2 � t + t2)w1 � t�1

(1 � t)2w2+

+[(1 � t)2(1 + t � 2t2 + t3) + t2]w3.
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In order to satisfy relation a13a
a23
13 = aa23

13 a13 the following system of

equations should have a solution

8
>>>>>>>>>><

>>>>>>>>>>:

1 � 3t + 4t2 � 4t3 + 3t4 � t5 = 0,
(1 � t)2(�1 � t � t2 + t3) = 0,
t(1 � t)5 = 0,
(1 � t)2(�t�1

+ 1 � t + t2) = 0,
t�1

(1 � t)4(1 + t2) = 0,
(1 � t)2(1 � t + t2 � t3) = 0,
(1 � t)2(�1 + t � t2 + t�1

) = 0,
1 � t � 4t2 + 8t3 � 5t4 + t5 = 0.
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This system has a solution only if t = 1. In this case,

automorphisms a12, a13, a23 are equal to the identity

automorphism. ⇤
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7. Torsion in bBn

V.Ya. Lin formulated the following question in the Kourovka

Notebook

Question

Is there a non-trivial epimorphism of Bn onto a non-abelian group

without torsion?

An answer to this question was given by P. Linnell and T. Schick in

2007.
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We conjecture that the group bBn, n � 3, does not have torsion and

since there exists the epimorphism Bn �! bBn, the group bBn will be

another example that answers Lin’s question.

We prove that bB3 does not have torsion.
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Let bP3, bU2, bU3 be the images of P3, U2, U3 by the canonical

epimorphism B3 �! bB3. Denote by bij , 1  i < j  3 the images

of aij , 1  i < j  3, by this epimorphism. Then bU2 = hb12i is the

infinite cyclic group and

bU3 = hb13, b23 || [b13, b
b23
13 ] = [b23, b

b13
23 ] = 1i =

= hb13, b23 || [b13, b13[b13, b23]] = [b23, b23[b23, b13]] = 1i.
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Using commutator identities or direct calculations we see that the

last two relations are equivalent to the following relation

[[b23, b13], b23] = [[b23, b13], b13] = 1.
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Hence, bU3 is a free 2-step nilpotent group of rank 2 and so, every

element g 2 bU3 has a unique presentation of the form

g = b↵13b
�
23[b23, b13]

�

for some integers ↵,�, �.
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The same way as in the case of classical braid group, bU3 is a

normal subgroup of bP3 and the action of bU2 is defined in the

following lemma.

Lemma

The action of bU2 on bU3 is given by the formulas

b
bk12
13 = b13[b23, b13]

k , b
bk12
23 = b23[b23, b13]

�k , [b23, b13]
bk12 = [b23, b13], k 2 Z.⇤
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The action of the generators �1 and �2 of bB3 on bP3 is given in the

next lemma.

Lemma

The following conjugation formulas hold in bB3

b
�±1

1
12 = b12, b�1

13 = b23[b23, b13]
�1, b�1

23 = b13, b
��1

1
13 = b23,

b
��1

1
23 = b13[b23, b13]

�1, [b23, b13]
��1

1 = [b23, b13]
�1,

b�2
12 = b13[b23, b13]

�1, b�2
13 = b12, b

�±1
2

23 = b23, b
��1

2
12 = b13,

b
��1

2
13 = b12[b23, b13]

�1, [b23, b13]
��1

2 = [b23, b13]
�1. ⇤
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Let us denote by ⇤3 = {e,�1,�2,�2�1,�1�2,�1�2�1} the set of

representatives of bP3 in bB3. Then every element in bB3 can be

written in the form

b↵12b
�
13b

�
23z

��, where ↵,�, �, � 2 Z, z = [b23, b13], � 2 ⇤3.
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Theorem

The group bB3 is torsion-free.
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Proof. The group bP3 does not have torsion. Hence, if bB3 has

elements of finite order, then they have the form

b↵12b
�
13b

�
23z

��, � 2 ⇤3 \ {e}.
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Every element which is conjugate with an element of finite order

has a finite order. Taking into account the following formulas

��1
1 ·�2·�1 = b�1

12 �1�2�1, �2�1·�2·��1
1 ��1

2 = �1, ��1
1 ·�1�2·�1 = �2�1,

it is sufficient to consider only two cases: � = �2 and � = �1�2.
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Let � = �2, take g = b↵12b
�
13b

�
23z

��2. Then we have

g2
= b↵+�

12 b↵+�
13 b2�+1

23 z↵�+�(���+↵�1).
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If g2
= 1, then ↵+ � = 0 and we have

g2
= b2�+1

23 z2↵�+↵.

Since 2� + 1 cannot be zero for integer �, the elements of this form

cannot be of finite order.
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Let � = �1�2. Then we have

(�1�2)
2
= b12�2�1, (�1�2)

3
= b12b13b23.
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We calculate

g3
= (b↵12b

�
13b

�
23z

��1�2)
3
=

b↵+�+�+1
12 b↵+�+�+1

13 b↵+�+�+1
23 z↵(↵+2���)+�2+�2���+3�+3� .

V. Vershinin Braids



If g3
= 1, then the following system of linear equations has a

solution over Z
⇢

↵+ � + � + 1 = 0,
↵(↵+ 2� � �) + �2

+ �2 � �� + 3� + 3� = 0.
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From the first equation one gets: ↵ = �1 � � � �. Inserting this

equality into the second equation, we have

3(�2
+ 2� + �) + 1 = 0.

However, this equation does not have integer solutions. ⇤
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