On homotopy braids

Vladimir Vershinin

Conference "Advances in Homotopy Theory II" May, 4, 2022

This is a joint work with V.Bardakov and Jie Wu.

Plan

- 1. Introduction.
- 2. Artin's presentation of the braid group
- 3. Presentaion of the pure braid group
- 4. Reduced free group
- 5. Homotopy braid group
- 6. Linearity
- 6.1. Existence
- 6. 2. Homotopy braids and the Burau representation
- 7. Torsion in \widehat{B}_{n}

Braids

1. Introduction

Classical braid group can be defined as the fundamental group of configuration space or as the mapping class group of a disc with n punctures. Being a natural object, braids admit generalizations in various directions. Also there are special types of braids defined among all braids by specific properties.

Two geometric braids with the same endpoints are called homotopic if one can be deformed to the other by homotopies of the braid strings which fix the endpoints, so that different strings do not intersect. If two geometric braids are isotopic, they are evidently homotopic.
E. Artin posed the question of whether the notions of isotopy and homotopy of braids are different or the same. Namely he wrote:
"Assume that two braids can be deformed into each other by a deformation of the most general nature including self intersection of each string but avoiding intersection of two different strings. Are they isotopic?"

Deborah Goldsmith gave an example of a braid which is not trivial in the isotopic sense, but is homotopic to the trivial braid. At first she expressed this braid and homotopy process by the pictures. We give these pictures in Figure 1.

Figure: 1

This braid is expressed in the canonical generators of the classical braid group in the following form:

$$
\sigma_{1} \sigma_{2}^{2} \sigma_{1}^{2} \sigma_{2}^{-2} \sigma_{1}^{-2} \sigma_{2}^{2} \sigma_{1}^{-2} \sigma_{2}^{-2} \sigma_{1}
$$

2. Artin presentation for braid group

Artin presentation of the braid group $B r_{n}$ has generators σ_{i}, $i=1, \ldots, n-1$ and relations:

$$
\begin{cases}\sigma_{i} \sigma_{j} & =\sigma_{j} \sigma_{i}, \text { if }|i-j|>1 \\ \sigma_{i} \sigma_{i+1} \sigma_{i} & =\sigma_{i+1} \sigma_{i} \sigma_{i+1}\end{cases}
$$

3. Presentaion of the pure braid group

Define the elements $a_{i, j}, 1 \leq i<j \leq n$, of $B r_{n}$ by:

$$
a_{i, j}=\sigma_{j-1 \ldots} \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \ldots \sigma_{j-1}^{-1}
$$

Geometrically generator of this type is depicted as follows

Figure: Generator $a_{1, j}$

They satisfy the Burau relations:

$$
\begin{gather*}
a_{i, j} a_{k, l}=a_{k, l} a_{i, j} \text { for } i<j<k<l \text { and } i<k<l<j, \\
\qquad \begin{array}{c}
a_{i, j} a_{i, k} a_{j, k}=a_{i, k} a_{j, k} a_{i, j} \text { for } i<j<k, \\
a_{i, k} a_{j, k} a_{i, j}=a_{j, k} a_{i, j} a_{i, k} \text { for } i<j<k, \\
a_{i, k} a_{j, k} a_{j, l} a_{j, k}^{-1}=a_{j, k} a_{j, l} a_{j, k}^{-1} a_{i, k} \text { for } i<j<k<l .
\end{array} .
\end{gather*}
$$

W. Burau proved that this gives a presentation of the pure braid group P_{n}.

4. Reduced free group

For elements a, b of arbitrary group G we will use the following notations

$$
a^{b}=b^{-1} a b, \quad[a, b]=a^{-1} b^{-1} a b
$$

Let $F_{n}=F\left(x_{1}, \ldots, x_{n}\right)$ be the free group on generators x_{1}, \ldots, x_{n}. We denote by K_{n} the quotient group of F_{n} by the relations

$$
\left[x_{i}, x_{i}^{g}\right]=1, i=1, \ldots, n,
$$

where g is an arbitrary element of F_{n}. The group K_{n} is called the reduced free group.

It is the quotient group of the free group obtained by adding relations which express that each x_{i} commutes with all of its conjugates.

This group can be characterized also the following way. Let X_{i} be the normal subgroup of F_{n} generated by x_{i} and let [X_{i}] be the commutator subgroup of X_{i}. Then $N_{n}=\left[X_{1}\right] \ldots\left[X_{n}\right]$ is also the normal subgroup of F_{n} and K_{n} is the quotient group F_{n} / N_{n}.

This group was introduced by J. Milnor and studied by Habegger \& Lin, F. Cohen and F. Cohen \& Jie Wu.

5. Homotopy braid group

Recall that the homotopy braid group \widehat{B}_{n} is the quotient of the braid group B_{n} by the relations

$$
\left[a_{i k}, a_{i k}^{g}\right]=1, \text { where } g \in\left\langle a_{1 k}, a_{2 k}, \ldots, a_{k-1, k}\right\rangle, 1 \leq i<k \leq n .
$$

Let us denote by ϕ the canonical epimorphism from the standard braid group to the homotopy braid group

$$
\phi: B_{n} \rightarrow \widehat{B}_{n} .
$$

The quotient of the pure braid group P_{n} by the same relations gives us the pure homotopy braid group \widehat{P}_{n} and from the standard short exact sequence for B_{n} we have the following short exact sequence

$$
1 \longrightarrow \widehat{P}_{n} \longrightarrow \widehat{B}_{n} \longrightarrow S_{n} \longrightarrow 1,
$$

where S_{n} is the symmetric group.

The group \widehat{P}_{n} has the decomposition $\widehat{P}_{n}=\widehat{U}_{n} \rtimes \widehat{P}_{n-1}$, where \widehat{U}_{n} is the quotient of the free group $U_{n}=\left\langle a_{1 n}, a_{2 n}, \ldots, a_{n-1, n}\right\rangle$ of rank $n-1$ by the relations

$$
\left[a_{i n}, a_{i n}^{g}\right]=1, \text { where } g \in U_{n}, 1 \leq i<k \leq n .
$$

Note, that \widehat{U}_{n} is isomorphic to K_{n-1}. In particular, \widehat{U}_{2} is isomorphic to the infinite cyclic group and \widehat{U}_{3} is the quotient of $U_{3}=\left\langle a_{13}, a_{23}\right\rangle$ by the relations

$$
\begin{aligned}
& a_{13} \cdot a_{23}^{-1} a_{13} a_{23}=a_{23}^{-1} a_{13} a_{23} \cdot a_{13}, \\
& a_{23} \cdot a_{13}^{-1} a_{23} a_{13}=a_{13}^{-1} a_{23} a_{13} \cdot a_{23} .
\end{aligned}
$$

The canonical Artin monomorphism

$$
\nu_{n}: B_{n} \hookrightarrow \text { Aut } F_{n}
$$

induces a monomorphism

$$
\hat{\nu}_{n}: \widehat{B}_{n} \rightarrow \text { Aut } K_{n}
$$

(Cohen and Wu).

Theorem (Habegger and Lin)
K_{n} is a finitely generated nilpotent group of class n.

6. Linearity

6.1. Existence

Recall that a group G is called linear if it has a faithful representation into the general linear group $G L_{m}(k)$ for some m and a field k.

Theorem
The homotopy braid group \widehat{B}_{n} is linear for all $n \geq 2$. Moreover, for every $n \geq 2$ there is a natural m such that there exists a faithful representation

$$
\widehat{B}_{n} \longrightarrow G L_{m}(\mathbb{Z})
$$

Proof. The reduced free group $K_{n}, n \geq 2$ is nilpotent. Finitely generated nilpotent groups are polycyclic and hence they are represented by integer matrices as was proved by L.Auslender and R.G.Swan. Also the holomorph of every polycyclic group has a faithful representation into $G L_{m}(\mathbb{Z})$ for some m. Hence, the holomorph $\operatorname{Hol}\left(K_{n}\right)$ has a faithful representation into $G L_{m}(\mathbb{Z})$ for some m. And $\operatorname{Hol}\left(K_{n}\right)$ contains $\operatorname{Aut}\left(K_{n}\right)$ as a subgroup and as \widehat{B}_{n} is embedded into $\operatorname{Aut}\left(K_{n}\right)$ there exists a monomorphism $\widehat{B}_{n} \longrightarrow G L_{m}(\mathbb{Z})$.
6.2. Homotopy braids and the Burau representation

It is interesting to find a faithful linear representation of \widehat{B}_{n} explicitly. For example, is it possible to do with the help of the Burau representation?

Let

$$
\rho_{B}: B_{n} \longrightarrow G L\left(W_{n}\right)
$$

be the Burau representation of B_{n}, where W_{n} is a free $\mathbb{Z}\left[t^{ \pm 1}\right]$-module of rank n with the basis $w_{1}, w_{2}, \ldots, w_{n}$.

Let $n=3$. In this case the automorphisms $\rho_{B}\left(\sigma_{i}\right), i=1,2$, of module W_{3} act by the rule
$\sigma_{1}:\left\{\begin{array}{l}w_{1} \longmapsto(1-t) w_{1}+t w_{2}, \\ w_{2} \longmapsto w_{1}, \\ w_{3} \longmapsto w_{3},\end{array} \quad \sigma_{2}:\left\{\begin{array}{l}w_{1} \longmapsto w_{1}, \\ w_{2} \longmapsto(1-t) w_{2}+t w_{3}, \\ w_{3} \longmapsto w_{2},\end{array}\right.\right.$
where we write for simplicity σ_{i} instead of $\rho_{B}\left(\sigma_{i}\right)$.

Let us find the action of the generators of P_{3} on the module W_{3}. Recall, that $P_{3}=U_{3} \rtimes U_{2}$, where U_{2} is the infinite cyclic group with the generator $a_{12}=\sigma_{1}^{2}, U_{3}$ is the free group of rank 2 with the free generators

$$
a_{13}=\sigma_{2} \sigma_{1}^{2} \sigma_{2}^{-1}, \quad a_{23}=\sigma_{2}^{2}
$$

These elements define the following automorphisms of W_{3}

$$
a_{12}:\left\{\begin{array}{l}
w_{1} \longmapsto\left(1-t+t^{2}\right) w_{1}+t(1-t) w_{2}, \tag{2}\\
w_{2} \longmapsto(1-t) w_{1}+t w_{2}, \\
w_{3} \longmapsto w_{3},
\end{array}\right.
$$

$$
a_{13}:\left\{\begin{array}{l}
w_{1} \longmapsto\left(1-t+t^{2}\right) w_{1}+t(1-t) w_{3} \tag{3}\\
w_{2} \longmapsto(1-t)^{2} w_{1}+w_{2}-(1-t)^{2} w_{3} \\
w_{3} \longmapsto(1-t) w_{1}+t w_{3}
\end{array}\right.
$$

$$
a_{23}:\left\{\begin{array}{l}
w_{1} \longmapsto w_{1}, \tag{4}\\
w_{2} \longmapsto\left(1-t+t^{2}\right) w_{2}+t(1-t) w_{3}, \\
w_{3} \longmapsto(1-t) w_{2}+t w_{3},
\end{array}\right.
$$

$$
a_{23}^{-1}:\left\{\begin{array}{l}
w_{1} \longmapsto w_{1} \tag{5}\\
w_{2} \longmapsto t^{-1} w_{2}+\left(1-t^{-1}\right) w_{3} \\
w_{3} \longmapsto t^{-1}\left(1-t^{-1}\right) w_{2}+\left(1-t^{-1}+t^{-2}\right) w_{3}
\end{array}\right.
$$

Let us denote by $\widehat{\rho}_{B}$ the representation (if it exists)

$$
\widehat{\rho}_{B}: \widehat{B}_{n} \longrightarrow G L\left(W_{n}\right)
$$

such that

$$
\begin{equation*}
\rho_{B}=\widehat{\rho}_{B} \circ \phi: B_{n} \rightarrow G L\left(W_{n}\right) . \tag{6}
\end{equation*}
$$

Proposition

For $n=3$ the representation $\widehat{\rho}_{B}$ such that the condition (6) holds exists only if we consider the specialization of the Burau representation with $t=1$. In this case $\widehat{\rho}_{B}$ is trivial on \widehat{P}_{3}. Hence, the image $\widehat{\rho}_{B}\left(\widehat{B}_{3}\right)$ is isomorphic to the symmetric group S_{3}.

Proof. To obtain a representation $\widehat{\rho}_{B}\left(\widehat{B}_{3}\right)$ we must have the following relations among the automorphisms $a_{i, j}$ (2)-(4) of W_{3} :

$$
\left[a_{13}, a_{13}^{a_{23}}\right]=1, \quad\left[a_{23}, a_{23}^{a_{13}}\right]=1
$$

which are equivalent to the following relations

$$
a_{13} a_{13}^{a_{23}}=a_{13}^{a_{23}} a_{13}, \quad a_{23} a_{23}^{a_{13}}=a_{23}^{a_{13}} a_{23}
$$

From the definitions of automorphisms (2)-(5) we obtain
$a_{23}^{-1} a_{13} a_{23}:\left\{\begin{array}{l}w_{1} \longmapsto\left(1-t+t^{2}\right) w_{1}+t(1-t)^{2} w_{2}+t^{2}(1-t) w_{3}, \\ w_{2} \longmapsto w_{2}, \\ w_{3} \longmapsto t^{-1}(1-t) w_{1}-t^{-1}(1-t)^{2} w_{2}+t w_{3} .\end{array}\right.$

$$
a_{13} a_{13}^{a_{23}}:\left\{\begin{aligned}
w_{1} \longmapsto & \left(2-4 t+4 t^{2}-2 t^{3}+t^{4}\right) w_{1}+ \\
& (1-t)^{2}\left(-1-t^{2}+t^{3}\right) w_{2}+ \\
& t^{2}(1-t)\left(2-t+t^{2}\right) w_{3} \\
w_{2} \longmapsto & (1-t)^{2}\left(-t^{-1}+2-t+t^{2}\right) w_{1}+ \\
& {\left[(1-t)^{4}\left(t+t^{-1}\right)+1\right] w_{2}+} \\
& t(1-t)^{2}\left(-1+t-t^{2}\right) w_{3} \\
w_{3} \longmapsto & (1-t)\left(2-t+t^{2}\right) w_{1}+ \\
& (1-t)^{2}\left[-1+t-t^{2}\right] w_{2}+ \\
& +t^{2}\left(2-2 t+t^{2}\right) w_{3} .
\end{aligned}\right.
$$

$$
a_{13}^{a_{23}} a_{13}:\left\{\begin{aligned}
w_{1} \longmapsto & \left(1-t+2 t^{3}-2 t^{4}+t^{5}\right) w_{1}+t(1-t)^{2} w_{2}+ \\
& +t(1-t)\left(1-2 t+5 t^{2}-3 t^{3}+t^{4}\right) w_{3}, \\
w_{2} \longmapsto & (1-t)^{2} w_{1}+w_{2}-(1-t)^{2} w_{3}, \\
w_{3} \longmapsto & (1-t)\left(2-t+t^{2}\right) w_{1}-t^{-1}(1-t)^{2} w_{2}+ \\
& +\left[(1-t)^{2}\left(1+t-2 t^{2}+t^{3}\right)+t^{2}\right] w_{3} .
\end{aligned}\right.
$$

In order to satisfy relation $a_{13} a_{13}^{a_{23}}=a_{13}^{a_{23}} a_{13}$ the following system of equations should have a solution

$$
\left\{\begin{array}{l}
1-3 t+4 t^{2}-4 t^{3}+3 t^{4}-t^{5}=0 \\
(1-t)^{2}\left(-1-t-t^{2}+t^{3}\right)=0 \\
t(1-t)^{5}=0 \\
(1-t)^{2}\left(-t^{-1}+1-t+t^{2}\right)=0 \\
t^{-1}(1-t)^{4}\left(1+t^{2}\right)=0 \\
(1-t)^{2}\left(1-t+t^{2}-t^{3}\right)=0 \\
(1-t)^{2}\left(-1+t-t^{2}+t^{-1}\right)=0 \\
1-t-4 t^{2}+8 t^{3}-5 t^{4}+t^{5}=0
\end{array}\right.
$$

This system has a solution only if $t=1$. In this case, automorphisms a_{12}, a_{13}, a_{23} are equal to the identity automorphism. \square

7. Torsion in \widehat{B}_{n}

V.Ya. Lin formulated the following question in the Kourovka Notebook

Question
Is there a non-trivial epimorphism of B_{n} onto a non-abelian group without torsion?

An answer to this question was given by P. Linnell and T. Schick in 2007.

We conjecture that the group $\widehat{B}_{n}, n \geq 3$, does not have torsion and since there exists the epimorphism $B_{n} \longrightarrow \widehat{B}_{n}$, the group \widehat{B}_{n} will be another example that answers Lin's question.

We prove that \widehat{B}_{3} does not have torsion.

Let $\widehat{P}_{3}, \widehat{U}_{2}, \widehat{U}_{3}$ be the images of P_{3}, U_{2}, U_{3} by the canonical epimorphism $B_{3} \longrightarrow \widehat{B}_{3}$. Denote by $b_{i j}, 1 \leq i<j \leq 3$ the images of $a_{i j}, 1 \leq i<j \leq 3$, by this epimorphism. Then $\widehat{U}_{2}=\left\langle b_{12}\right\rangle$ is the infinite cyclic group and

$$
\begin{gathered}
\widehat{U}_{3}=\left\langle b_{13}, b_{23} \|\left[b_{13}, b_{13}^{b_{23}}\right]=\left[b_{23}, b_{23}^{b_{13}}\right]=1\right\rangle= \\
=\left\langle b_{13}, b_{23} \|\left[b_{13}, b_{13}\left[b_{13}, b_{23}\right]\right]=\left[b_{23}, b_{23}\left[b_{23}, b_{13}\right]\right]=1\right\rangle .
\end{gathered}
$$

Using commutator identities or direct calculations we see that the last two relations are equivalent to the following relation

$$
\left[\left[b_{23}, b_{13}\right], b_{23}\right]=\left[\left[b_{23}, b_{13}\right], b_{13}\right]=1
$$

Hence, \widehat{U}_{3} is a free 2-step nilpotent group of rank 2 and so, every element $g \in \widehat{U}_{3}$ has a unique presentation of the form

$$
g=b_{13}^{\alpha} b_{23}^{\beta}\left[b_{23}, b_{13}\right]^{\gamma}
$$

for some integers α, β, γ.

The same way as in the case of classical braid group, \widehat{U}_{3} is a normal subgroup of \widehat{P}_{3} and the action of \widehat{U}_{2} is defined in the following lemma.

Lemma
The action of \widehat{U}_{2} on \widehat{U}_{3} is given by the formulas
$b_{13}^{b_{12}^{k}}=b_{13}\left[b_{23}, b_{13}\right]^{k}, b_{23}^{b_{12}^{\kappa}}=b_{23}\left[b_{23}, b_{13}\right]^{-k},\left[b_{23}, b_{13}\right]^{b_{12}^{k}}=\left[b_{23}, b_{13}\right]$,

The action of the generators σ_{1} and σ_{2} of \widehat{B}_{3} on \widehat{P}_{3} is given in the next lemma.
Lemma
The following conjugation formulas hold in \widehat{B}_{3}

$$
\begin{gathered}
b_{12}^{\sigma_{1}^{ \pm 1}}=b_{12}, \quad b_{13}^{\sigma_{1}}=b_{23}\left[b_{23}, b_{13}\right]^{-1}, \quad b_{23}^{\sigma_{1}}=b_{13}, b_{13}^{\sigma_{1}^{-1}}=b_{23}, \\
b_{23}^{\sigma_{1}^{-1}}=b_{13}\left[b_{23}, b_{13}\right]^{-1},\left[b_{23}, b_{13}\right]^{\sigma_{1}^{-1}}=\left[b_{23}, b_{13}\right]^{-1}, \\
b_{12}^{\sigma_{2}}=b_{13}\left[b_{23}, b_{13}\right]^{-1}, \quad b_{13}^{\sigma_{2}}=b_{12}, \quad b_{23}^{\sigma_{2}^{ \pm 1}}=b_{23}, \quad b_{12}^{\sigma_{2}^{-1}}=b_{13}, \\
b_{13}^{\sigma_{2}^{-1}}=b_{12}\left[b_{23}, b_{13}\right]^{-1},\left[b_{23}, b_{13}\right]^{\sigma_{2}^{-1}}=\left[b_{23}, b_{13}\right]^{-1} .
\end{gathered}
$$

Let us denote by $\Lambda_{3}=\left\{e, \sigma_{1}, \sigma_{2}, \sigma_{2} \sigma_{1}, \sigma_{1} \sigma_{2}, \sigma_{1} \sigma_{2} \sigma_{1}\right\}$ the set of representatives of \widehat{P}_{3} in \widehat{B}_{3}. Then every element in \widehat{B}_{3} can be written in the form

$$
b_{12}^{\alpha} b_{13}^{\beta} b_{23}^{\gamma} z^{\delta} \lambda, \text { where } \alpha, \beta, \gamma, \delta \in \mathbb{Z}, \quad z=\left[b_{23}, b_{13}\right], \quad \lambda \in \Lambda_{3} .
$$

Theorem
The group \widehat{B}_{3} is torsion-free.

Proof. The group \widehat{P}_{3} does not have torsion. Hence, if \widehat{B}_{3} has elements of finite order, then they have the form

$$
b_{12}^{\alpha} b_{13}^{\beta} b_{23}^{\gamma} z^{\delta} \lambda, \quad \lambda \in \Lambda_{3} \backslash\{e\} .
$$

Every element which is conjugate with an element of finite order has a finite order. Taking into account the following formulas
$\sigma_{1}^{-1} \cdot \sigma_{2} \cdot \sigma_{1}=b_{12}^{-1} \sigma_{1} \sigma_{2} \sigma_{1}, \quad \sigma_{2} \sigma_{1} \cdot \sigma_{2} \cdot \sigma_{1}^{-1} \sigma_{2}^{-1}=\sigma_{1}, \quad \sigma_{1}^{-1} \cdot \sigma_{1} \sigma_{2} \cdot \sigma_{1}=\sigma_{2} \sigma_{1}$,
it is sufficient to consider only two cases: $\lambda=\sigma_{2}$ and $\lambda=\sigma_{1} \sigma_{2}$.

Let $\lambda=\sigma_{2}$, take $g=b_{12}^{\alpha} b_{13}^{\beta} b_{23}^{\gamma} z^{\delta} \sigma_{2}$. Then we have

$$
g^{2}=b_{12}^{\alpha+\beta} b_{13}^{\alpha+\beta} b_{23}^{2 \gamma+1} z^{\alpha \gamma+\beta(\beta-\gamma+\alpha-1)} .
$$

If $g^{2}=1$, then $\alpha+\beta=0$ and we have

$$
g^{2}=b_{23}^{2 \gamma+1} z^{2 \alpha \gamma+\alpha} .
$$

Since $2 \gamma+1$ cannot be zero for integer γ, the elements of this form cannot be of finite order.

Let $\lambda=\sigma_{1} \sigma_{2}$. Then we have

$$
\left(\sigma_{1} \sigma_{2}\right)^{2}=b_{12} \sigma_{2} \sigma_{1}, \quad\left(\sigma_{1} \sigma_{2}\right)^{3}=b_{12} b_{13} b_{23}
$$

We calculate

$$
\begin{aligned}
g^{3}= & \left(b_{12}^{\alpha} b_{13}^{\beta} b_{23}^{\gamma} z^{\delta} \sigma_{1} \sigma_{2}\right)^{3}= \\
& b_{12}^{\alpha+\beta+\gamma+1} b_{13}^{\alpha+\beta+\gamma+1} b_{23}^{\alpha+\beta+\gamma+1} z^{\alpha(\alpha+2 \gamma-\beta)+\beta^{2}+\gamma^{2}-\beta \gamma+3 \delta+3 \beta}
\end{aligned}
$$

If $g^{3}=1$, then the following system of linear equations has a solution over \mathbb{Z}

$$
\left\{\begin{array}{l}
\alpha+\beta+\gamma+1=0 \\
\alpha(\alpha+2 \gamma-\beta)+\beta^{2}+\gamma^{2}-\beta \gamma+3 \delta+3 \beta=0 .
\end{array}\right.
$$

From the first equation one gets: $\alpha=-1-\beta-\gamma$. Inserting this equality into the second equation, we have

$$
3\left(\beta^{2}+2 \beta+\delta\right)+1=0
$$

However, this equation does not have integer solutions. \square

