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A category

Begin by setting [m] = {1, 2, . . . ,m} and define a category

C([m]) as follows

objects: Pairs (X,A) where

(X,A) =
{

(X1, A1), (X2, A2), . . . , (Xm, Am)
}

is a family of based CW-pairs.

morphisms:

f : (X,A) −→ (Y ,B)

consisting of m continuous maps fi : Xi −→ Yi

satisfying fi(Ai) ⊂ Bi.



A functor

Next, let K be a simplicial complex on the vertex set [m].

A polyhedral product is a functor

Z(K;−) : C([m]) −→ Top

satisfying

Z(K; (X,A)) ⊆
m∏
i=1

Xi

and is defined as a colimit of a certain diagram

D : K → CW∗



A definition

For each σ ∈ K, the diagram

D : K → CW∗

is defined by

D(σ) =
m∏
i=1

Wi, where Wi =

{
Xi if i ∈ σ
Ai if i ∈ [m]− σ.

We set

Z(K; (X,A)) = colim
(
D(σ)

)
.

Here, the colimit is a union of natural subspaces⋃
σ∈K

D(σ) ⊆
m∏
i=1

Xi

(but the colimit structure is essential.)



The 2-torus as a polyhedral product

We take K to be the boundary of a square, so m = 4.

(X,A) = {(D1, S0)}.

=⇒ Z(K; (D1, S0)) ⊆ D1 ×D1 ×D1 ×D1

is a subset of the 4-cube

D(σ1) D(σ2) D(σ3) D(σ4)

This figure is from the thesis of

Alvise Trevisan



The Hopf map likes polyhedral products

To see the Hopf map in this setting, we take

K = {∅, v1, v2} and (X,A) = (D2, S1)

S3 S2

∂(D2 ×D2)

D2 × S1 ∪S1×S1 S1 ×D2 D2 ∪S1 D2

η

∼=

∼=

/S1

∼=

∼= Z
(
K; (D2, S1)

)
Here, T 2 acts on D2 ×D2 ⊂ C2 and S1 is the diagonal

subgroup.



So does the Whitehead product

Consider the attaching map of the top cell of T 2 × T 2

ω : S3 −→ S2 ∨ S2

K = {∅, v1, v2} and (X,A) = (D2, S1)

S3 S2 ∨ S2

∂(D2 ×D2)

D2 × S1 ∪S1×S1 S1 ×D2 (S2 × ∗) ∪∗×∗ (∗ × S2)

ω

∼=

∼=

c

'

∼= Z
(
K; (D2, S1)

) ∼= Z
(
K; (S2, ∗)

)
The map c is induced by the map of pairs (D2, S1) −→ (S2, ∗).



A variety of contexts

(X,A) Z(K; (X,A))

(D2, S1) toric geometry and topology

(D1, S0) surfaces, number theory

(S1, ∗) robotics, right-angled Artin groups

(RP∞, ∗) right-angled Coxeter groups

(C,C∗) complements of coordinate arrangements

(Rn,Rn \ {0}) complements of certain non-coordinate arrangements

(CP∞,CPk) monomial ideal rings

(EG,G) free groups

(BG, ∗) monodromy, combinatorics

(PX,ΩX) homotopy theory, Whitehead products

(S2k+1, ∗) graph products, quadratic algebras



A theorem

The next theorem reduces the complexity of the polyhedral product

Z
(
K; (X,A)

)
Theorem 1. Topological spaces Ẑ(KI ; (XI, AI))

)
exist such that

Σ
(
Z(K; (X,A))

) '−→ Σ
( ∨
I⊆[m]

Ẑ(KI ; (XI, AI))
)

where I = (i1, · · · , ik) satisfies 1 ≤ i1 < · · · < ik ≤ m,

and KI ⊆ K denotes the full subcomplex of K consisting of all simplices

which have their vertices in I .

The content of this theorem lies in the fact that the spaces Ẑ(KI ; (XI, AI))
)

are generally much simpler geometrically than are Z(K; (X,A)).

The polyhedral smash product Ẑ(L; (Y ,B))
)

is defined using smash
products in a way entirely analogous to the polyhedral product.



The special case of wedge pairs

A family of CW pairs (U, V ) of the form

(U, V ) = (B ∨ C,B ∨ E)

with

(Ui, Vi) = (Bi ∨ Ci, Bi ∨ Ei)

for all i, and such that

Ei ↪→ Ci

is a null homotopic inclusion, is called wedge decomposable.

Remark. It’s not a surprise that the polyhedral smash product
loves pairs of this form because the smash product distributes

over the wedge.



The special case of wedge pairs

– a Cartan-type formula –

Wedge decomposable pairs allow for a nice description of the
the polyhedral smash product.

Theorem 2. There is a homotopy equivalence

Ẑ
(
K; (B ∨ C,B ∨ E)

)
−→

∨
I≤[m]

Ẑ
(
KI ; (C,E)

)
∧ Ẑ

(
K[m]−I ; (B,B)

)
with the convention that

Ẑ
(
K∅; (B,B)∅

)
, Ẑ
(
K∅; (C,E)∅

)
and Ẑ

(
KI ; (∅,∅)I

)
are all S0.

The equivalence is natural with respect to maps of wedge
decomposable pairs.



The wedge lemma helps us

The wedge lemma identifies Ẑ
(
KI ; (C,E)

)
because Ei ↪→ Ci is null homotopic.

Corollary 1. There is a homotopy equivalence

Ẑ
(
K; (B ∨ C,B ∨ E)

) '−−−−→

∨
I≤[m]

[( ∨
σ∈KI

Σ|lkσ(KI)| ∧ D̂I
C,E(σ)

)
∧ Ẑ

(
K[m]−I ; (B,B)[m]−I

)
︸ ︷︷ ︸

]
a smash product of the Bi

where

D̂I
C,E(σ) =

m∧
j=1

Wij, with Wij =

{
Cij if ij ∈ σ

Eij if ij ∈ I − σ.



Extending from (B ∨ C,B ∨ E)
)

to (X,A))
)

We wish to use symmetric products to prove the following:

Theorem 3. Let K have m vertices and suppose that (X,A)
is a family of pointed, path-connected pairs of finite CW-complexes.

Then there exist spaces

Bj, Cj, Ej, 1 ≤ j ≤ m

which are finite wedges of spheres and mod-n Moore spaces so
that

H∗(Ẑ(K; (X,A))) ∼= H∗(Ẑ(K; (B ∨ C,B ∨ E)))

over the integers.

Other computations: BBCG 2014, Qibing Zheng 2014



Symmetric products

Definition. Let (X, ∗) denote a pointed topological space.

The m-fold symmetric product for (X, ∗) is the orbit space

SPm(X) = Xm/Σm

where the symmetric group on m-letters Σm acts on the left
by permutation of coordinates.

There are natural maps

e : SPm(X) −→ SPm+1(X)

[x1, x2, . . . , xm] 7→ [x1, x2, . . . , xm, ∗]

which allow for the definition of the infinite symmetric product
as a colimit

SP (X) = colim SPm(X).
1 ≤ m



Symmetric products

The next theorem is a version of a result due to Dold & Thom.

Theorem 3. Given a pointed, path-connected pair of finite
CW-complexes (X,A, ∗), then

(i) SP (X) is homotopy equivalent to a product of Eilenberg-
MacLane spaces ∏

1≤q≤∞
K(Hq(X), q)

=⇒ πiSP (X) ∼= H̃i(X).

(ii) When A is a closed subcomplex of X , the natural map

SP (X) −→ SP (X/A)

is a quasi-fibration with quasi-fibre SP (A).



Symmetric products

A natural map

SP q1(X1) ∧ SP q2(X2) ∧ · · · ∧ SP qm(Xm)

θ̂−−−→ SP q(X1 ∧X2 ∧ · · · ∧Xm),

is constructed for q = q1q2 · · · qm by setting

θ̂
([

[x11, x12, . . . , x1q1], [x21, x22, . . . , x2q2], . . . , [xm1, xm2, . . . , xmqm]
]∧)

=
[ ∏

1≤jt≤qt
1≤t≤m

[
x1j1, x2j2, . . . , xmjm

]∧]

where square brackets [ ] are used to denote equivalence classes
in the symmetric product, and [ ]∧ for the smash products.



Symmetric products and polyhedral products

The map θ̂ extends in a natural way to give a map of colimits

SP (X1) ∧ SP (X2) ∧ · · · ∧ SP (Xm)

θ̂−−−→ SP (X1 ∧X2 ∧ · · · ∧Xm)

This induces a structure map,

ζ : Ẑ
(
K; (SP (X), SP (A))

)
−→ SP

(
Ẑ
(
K; (X,A)

))
.

in not an entirely obvious way.



A definition (which will not restrict us)

The pairs
(U, V ) and (X,A)

are said to have strongly isomorphic homology provided three things happen:

(1) There are isomorphisms of singular homology groups

αj : H∗(Uj)→ H∗(Xj)

and
βj : H∗(Vj)→ H∗(Aj)

(2) There is a commutative diagram

H̄i(Vj)
λj∗−−→ H̄i(Uj)

βj

y yαj
H̄i(Aj)

ιj∗−→ H̄i(Xj),

where λj : Vj ⊂ Uj, and ιj : Aj ⊂ Xj are the natural inclusions.



A definition

(3) There is an induced morphism of exact sequences for which all vertical
arrows are isomorphisms:

0 −→ ker(λj∗) −→ H̄i(Vj)
λj∗−−→ H̄i(Uj) −→ coker(λj∗) −→ 0y βj

y βj

y yαj yᾱj y
0 −→ ker(ιj∗) −→ H̄i(Aj)

ιj∗−→ H̄i(Xj) −→ coker(ιj∗) −→ 0

where ᾱj is induced by αj.

Strongly isomorphic pairs are good because they ensure that everything
behaves well with respect to the Künneth theorem.



A consequence of the definition

Lemma. Let (X,A), and (U, V ) be pairs of pointed, path
connected finite CW complexes.

Then, if they have strongly isomorphic homology groups, there
is an isomorphism of singular homology groups

H̄∗
(
D̂(X,A)(σ)

)
−→ H̄∗

(
D̂(U,V )(σ)

)
.

for any face σ in the simplicial complex K,



Back to wedge decomposable pairs

Lemma. Let (X,A) consist of pointed, path-connected pairs
of finite CW-complexes.

Then there exist wedges of spheres, and mod-pr Moore spaces

(B ∨ C,B ∨ E)

together with isomorphisms of singular homology groups

αj : H∗(Bj ∨ Cj)→ H∗(Xj)
and

βj : H∗(Bj ∨ Ej)→ H∗(Aj),

which give strong homology isomorphisms.

The inclusions Ej → Cj are null-homotopic, so the pairs

(B ∨ C,B ∨ E)

satisfy condition of wedge decomposability.



Getting the most out of a homology isomorphism

Suppose that (U, V ) and (X,A) are pointed, connected, pairs
of finite CW-complexes, with strongly isomorphic homology

groups.

[ We have in mind: (U, V ) = (B ∨ C,B ∨ E). ]

Then a multiplicative map of pairs

g :
(
SP (U), SP (V )

)
−→

(
SP (X), SP (A)

)
exists inducing strongly isomorphic homology groups including
a commutative diagram

H̄i

(
SP (Vj)

) λ∗−→ H̄i

(
SP (Uj)

)
g∗

y yg∗
H̄i

(
SP (Aj)

) ι∗−→ H̄i

(
SP (Xj)

)



Getting the most out of a homology isomorphism

. . . and another for which all vertical arrows are isomorphisms:

ker(λ∗) −→ H̄i(SP (Vj))
λ∗−→ H̄i(SP (Uj)) −→ coker(λ∗)

g∗

y g∗

y yg∗ yḡ∗
ker(ι∗) −→ H̄i(SP (Aj))

ι∗−→ H̄i(SP (Xj)) −→ coker(ι∗)

where ḡ∗ is induced by g∗.

Remark. The map g might not be homotopic to the one
which is given automatically by virtue of the fact that SP (X) is
homotopy equivalent to a product of Eilenberg-MacLane spaces.



Getting the most out of a homology isomorphism

Applying the functor D̂(−,−)(σ) to the map of pointed pairs

g :
(
SP (B ∨ C), SP (B ∨ E)

)
−→ (SP (X), SP (A))

(which induces a strong isomorphism in homology),

we get a morphism

D̂(SP (B∨C), SP (B∨E))(σ)
D̂(σ;g)−−−−−−→
'

D̂(SP (X),SP (A))(σ)

and, for each τ ⊂ σ, a commutative diagram

D̂(SP (B∨C), SP (B∨E))(τ ) D̂(SP (X),SP (A))(τ )

D̂(SP (B∨C), SP (B∨E))(σ) D̂(SP (X),SP (A))(σ)

D̂(τ ;g)

'

β β

D̂(σ;g)

'



Getting the most out of a homology isomorphism

Further there are induced morphisms of commutative
diagrams via the structure map ζ .

D̂(SP (B∨C), SP (B∨E))(σ) D̂(SP (X),SP (A))(σ)

SP
(
D̂(B∨C, B∨E)(σ)

)
SP
(
D̂(X, A)(σ)

)
'

ζ ζ

'

where the lower horizontal arrow is a homotopy equivalence by

the Dold-Thom theorem.



A conclusion

So, there is a map

SP
( ⋃

σ∈K D̂(B∨C, B∨E)(σ)
)

SP
( ⋃

σ∈K D̂(X, A)(σ)
)

SP
(
Ẑ(K; (B ∨ C, B ∨ E))

)
SP
(
Ẑ(K; (X, A))

)
µ

= =

µ

Finally, we invoke Quillen’s Projection Lemma to conclude the
proof.



Projection Lemma

Lemma. Let D and E be finite diagrams of finite CW com-
plexes over the same finite category C, satisfying:

(i) All inclusions in the intersection poset are closed
cofibrations.

(ii) We have colimits

U =
⋃
α∈C

Dα and X =
⋃
α∈C

Eα

(iii) There is a map

µ : SP (U) −→ SP (X)

which restricts to homotopy equivalences on

µ|SP (Dα)
: SP (Dα) −→ SP (Eα)

Then µ is a homotopy equivalence.



An example with numbers

Consider the composite

f : CP 2 ↪→ CP 3→ CP 3/CP 1.

and denote the mapping cylinder of f by Mf .

We shall describe describe the Poincaré series of Ẑ
(
K; (Mf ,CP 2)

)
for any for the special case

K =
{
{v1}, , {v2}, {v3}, {v1, v2}, {v1, v3}

}
.



An example with numbers

For (X,A) = (Mf ,CP 2), we have

(U, V ) =
(
S4 ∨ S6, S4 ∨ S2

)
.

so that

B = S4, C = S6 and E = S2

The theorem gives:

H̃∗
(
Ẑ
(
K; (Mf ,CP 2)

)) ∼= H̃∗
(
Ẑ(K; (B ∨ C,B ∨ E))

)
.



An example with numbers

Applying the Cartan decomposition we get:

Ẑ(K; (B ∨ C,B ∨ E))
'−→

∨
I≤[m]

Ẑ
(
KI ;

(
S6, S2

))
∧ Ẑ

(
K[m]−I ; (S4, S4

))
=

∨
I≤[m]

Ẑ
(
KI ;

(
S6, S2

))
∧ (S4

)∧|[m]−I||

The Wedge Lemma decomposes

Ẑ
(
KI ;

(
S6, S2

))
further by enumerating all the links |lkσ(KI)|. The reduced Hilbert-Poincaré

series for Ẑ(K; (B ∨ C,B ∨ E)), and hence for Ẑ(K; (X,A)) is

P
(
Ẑ(K; (B ∨ C,B ∨ E)), t

)
=
∑
I≤[m]

[ ∑
σ∈KI

[
t · P (|lkσ(KI)|, t) · P

(
D̂I
S6,S2(σ), t

)]
·

∏
j∈[m]−I

P (Bj, t)
]



An example with numbers

The cohomology of (Mf ,CP 2) satisfies

H∗(Mf ) = Z{b4, c6} and H∗(CP 2)) = Z{e2, b4}
where the dimensions of the classes are given by the subscripts.

The classes {e2, b4, c6} supported on the vertex i are denoted

by {ei2, b
i
4, c

i
6}.

We illustrate the computation by determining the summand
corresponding to

I = {2, 3} and σ = ∅.



An example with numbers

In this case, I = {2, 3} and σ = ∅. we have:

(i) D̂I
C,E(σ) = E2 ∧ E3 = S2 ∧ S2 and H̃

(
D̂I
C,E(σ)

)
= k{e2

2 ⊗ e3
2}

and so we get P
(
D̂I
S6,S2(σ), t) = t4.

(ii) Next, since [m]− I = {1}, we have:

∏
j∈{1}

P (Bj, t) = P (B1, t) = P (S4, t) =⇒ P (b1
4, t) = t4.

(iii) Turning to the links,

|lk∅(KI)| = |{{2}, {3}}| = S0

so that t · P
(
|lk∅(KI), t|

)
= t.



An example with numbers

Finally, for the case at hand, we get a contribution of t9 to the

Poincaré series for H∗
(
Ẑ(K; (X,A))

)
.

Continuing in this way, we arrive at the (reduced) Poincaré
series:

P
(
H∗(Ẑ(K; (Mf ,CP 2)), t

)
= t9 + t11 + 3t12 + 5t14 + 2t16

−→←−


