Symmetric Products and a realization of generators in the cohomology of Polyhedral Products

Advances in Homotopy Theory II, BIMSA
May 2-4, 2022
A report of joint work with

and our late colleagues

Sam Gitler

Fred Cohen
and the work of others.

A category

Begin by setting $[m]=\{1,2, \ldots, m\}$ and define a category $\mathcal{C}([\boldsymbol{m}])$ as follows
objects: Pairs $(\underline{X}, \underline{A})$ where

$$
(\underline{X}, \underline{A})=\left\{\left(X_{1}, A_{1}\right),\left(X_{2}, A_{2}\right), \ldots,\left(X_{m}, A_{m}\right)\right\}
$$

is a family of based CW-pairs.
morphisms:

$$
\underline{f}:(\underline{X}, \underline{A}) \longrightarrow(\underline{Y}, \underline{B})
$$

consisting of m continuous maps $f_{i}: X_{i} \longrightarrow Y_{i}$
satisfying $f_{i}\left(A_{i}\right) \subset B_{i}$.

A functor

Next, let K be a simplicial complex on the vertex set $[m]$.

A polyhedral product is a functor

$$
Z(K ;-): \mathcal{C}([\boldsymbol{m}]) \longrightarrow \text { Top }
$$

satisfying

$$
Z(K ;(\underline{X}, \underline{A})) \subseteq \prod_{i=1}^{m} X_{i}
$$

and is defined as a colimit of a certain diagram

$$
D: K \rightarrow C W_{*}
$$

A definition

For each $\sigma \in K$, the diagram

$$
D: K \rightarrow C W_{*}
$$

is defined by

$$
D(\sigma)=\prod_{i=1}^{m} W_{i}, \text { where } W_{i}=\left\{\begin{array}{l}
X_{i} \text { if } i \in \sigma \\
A_{i} \text { if } i \in[m]-\sigma .
\end{array}\right.
$$

We set

$$
Z(K ;(\underline{X}, \underline{A}))=\operatorname{colim}(D(\sigma)) .
$$

Here, the colimit is a union of natural subspaces

$$
\bigcup_{\sigma \in K} D(\sigma) \subseteq \prod_{i=1}^{m} X_{i}
$$

(but the colimit structure is essential.)

The 2-torus as a polyhedral product

We take K to be the boundary of a square, so $m=4$.

$$
\begin{aligned}
&(\underline{X}, \underline{A})=\left\{\left(D^{1}, S^{0}\right)\right\} \\
& \Longrightarrow \quad Z\left(K ;\left(D^{1}, S^{0}\right)\right) \subseteq D^{1} \times D^{1} \times D^{1} \times D^{1}
\end{aligned}
$$

is a subset of the 4-cube

$D\left(\sigma_{1}\right)$

$D\left(\sigma_{2}\right)$

$D\left(\sigma_{3}\right)$
$D\left(\sigma_{4}\right)$

This figure is from the thesis of
Alvise Trevisan

The Hopf map likes polyhedral products

To see the Hopf map in this setting, we take

$$
\begin{aligned}
& K=\left\{\varnothing, v_{1}, v_{2}\right\} \text { and }(X, A)=\left(D^{2}, S^{1}\right) \\
& S^{3} \longrightarrow S^{2}
\end{aligned}
$$

$$
\begin{aligned}
& D^{2} \times S^{1} \cup_{S^{1} \times S^{1}} S^{1} \times D^{2} \xrightarrow[/ S^{1}]{ } D^{2} \cup_{S^{1}} D^{2} \\
& \cong Z\left(K ;\left(D^{2}, S^{1}\right)\right)
\end{aligned}
$$

Here, T^{2} acts on $D^{2} \times D^{2} \subset \mathbb{C}^{2}$ and $\boldsymbol{S}^{\mathbf{1}}$ is the diagonal subgroup.

So does the Whitehead product

Consider the attaching map of the top cell of $T^{2} \times T^{2}$

$$
\begin{aligned}
& \omega: S^{3} \longrightarrow S^{2} \vee S^{2} \\
& K=\left\{\varnothing, v_{1}, v_{2}\right\} \quad \text { and } \quad(X, A)=\left(D^{2}, S^{1}\right) \\
& S^{3} \longrightarrow S^{2} \vee S^{2} \\
& \downarrow \\
& \partial\left(D^{2} \times D^{2}\right) \\
& \downarrow \cong \\
& D^{2} \times S^{1} \cup_{S^{1} \times S^{1}} S^{1} \times D^{2} \xrightarrow{c}\left(S^{2} \times *\right) \cup_{* \times *}\left(* \times S^{2}\right) \\
& \cong Z\left(K ;\left(D^{2}, S^{1}\right)\right) \quad \cong Z\left(K ;\left(S^{2}, *\right)\right)
\end{aligned}
$$

The map c is induced by the map of pairs $\left(D^{2}, S^{1}\right) \longrightarrow\left(S^{2}, *\right)$.

A variety of contexts

$$
\begin{gathered}
(\underline{\boldsymbol{X}}, \underline{\boldsymbol{A}}) \\
\left(D^{2}, S^{1}\right) \\
\left(D^{1}, S^{0}\right) \\
\left(S^{1}, *\right) \\
\left(\mathbb{R} P^{\infty}, *\right) \\
\left(\mathbb{C}, \mathbb{C}^{*}\right) \\
\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash\{0\}\right) \\
\left(\mathbb{C P}^{\infty}, \mathbb{C P}^{k}\right) \\
(E G, G) \\
(B G, *) \\
(P X, \Omega X) \\
\left(S^{2 k+1}, *\right)
\end{gathered}
$$

$Z(K ;(\underline{X}, \underline{A}))$
toric geometry and topology surfaces, number theory robotics, right-angled Artin groups
right-angled Coxeter groups
complements of coordinate arrangements
complements of certain non-coordinate arrangements monomial ideal rings
free groups
monodromy, combinatorics
homotopy theory, Whitehead products
graph products, quadratic algebras

A theorem

The next theorem reduces the complexity of the polyhedral product

$$
Z(K ;(\underline{X}, \underline{A}))
$$

Theorem 1. Topological spaces $\left.\widehat{Z}\left(K_{I} ;\left(\underline{X_{I}}, \underline{A_{I}}\right)\right)\right)$ exist such that

$$
\boldsymbol{\Sigma}(Z(K ;(\underline{X}, \underline{A}))) \xrightarrow{\simeq} \boldsymbol{\Sigma}\left(\bigvee_{I \subseteq[m]} \widehat{Z}\left(K_{I} ;\left(\underline{X_{I}}, \underline{A_{I}}\right)\right)\right)
$$

where $I=\left(i_{1}, \cdots, i_{k}\right)$ satisfies $1 \leq i_{1}<\cdots<i_{k} \leq m$,
and $K_{I} \subseteq K$ denotes the full subcomplex of K consisting of all simplices which have their vertices in I.

The content of this theorem lies in the fact that the spaces $\left.\widehat{Z}\left(K_{I} ;\left(\underline{X_{I}}, \underline{A_{I}}\right)\right)\right)$ are generally much simpler geometrically than are $Z(K ;(\underline{X}, \underline{A}))$.

The polyhedral smash product $\widehat{Z}(L ;(\underline{Y}, \underline{B})))$ is defined using smash products in a way entirely analogous to the polyhedral product.

The special case of wedge pairs

A family of CW pairs $(\underline{U}, \underline{V})$ of the form

$$
(\underline{U}, \underline{V})=(\underline{B \vee C}, \underline{B \vee E})
$$

with

$$
\left(U_{i}, V_{i}\right)=\left(B_{i} \vee C_{i}, B_{i} \vee E_{i}\right)
$$

for all i, and such that

$$
E_{i} \hookrightarrow C_{i}
$$

is a null homotopic inclusion, is called wedge decomposable.
Remark. It's not a surprise that the polyhedral smash product loves pairs of this form because the smash product distributes over the wedge.

The special case of wedge pairs

- a Cartan-type formula -

Wedge decomposable pairs allow for a nice description of the the polyhedral smash product.

Theorem 2. There is a homotopy equivalence

$$
\widehat{Z}(K ;(\underline{B \vee C}, \underline{B \vee E})) \longrightarrow \bigvee_{I \leq[m]} \widehat{Z}\left(K_{I} ;(\underline{C}, \underline{E})\right) \wedge \widehat{Z}\left(K_{[m]-I} ;(\underline{B}, \underline{B})\right)
$$

with the convention that

$$
\begin{gathered}
\widehat{Z}\left(K_{\varnothing} ;(\underline{B}, \underline{B})_{\varnothing}\right), \widehat{Z}\left(K_{\varnothing} ;(\underline{C}, \underline{E})_{\varnothing}\right) \text { and } \widehat{Z}\left(K_{I} ;(\varnothing, \varnothing)_{I}\right) \\
\text { are all } S^{0} .
\end{gathered}
$$

The equivalence is natural with respect to maps of wedge decomposable pairs.

The wedge lemma helps us

The wedge lemma identifies $\widehat{Z}\left(K_{I} ;(\underline{C}, \underline{E})\right)$ because $E_{i} \hookrightarrow C_{i}$ is null homotopic.

Corollary 1. There is a homotopy equivalence

$$
\left.\begin{array}{l}
\widehat{Z}(K ;(\underline{B \vee C}, \underline{B \vee E})) \xrightarrow{\simeq} \\
\underset{I \leq[m]}{\bigvee}\left[\left(\bigvee_{\sigma \in K_{I}}^{\vee} \Sigma\left|k_{\sigma}\left(K_{I}\right)\right| \wedge \widehat{D}_{\underline{C}, \underline{E}}^{I}(\sigma)\right)\right.
\end{array}\right) \underbrace{\widehat{Z}\left(K_{[m]-I} ;(\underline{B}, \underline{B})_{[m]-I}\right)}_{\text {a smash product of the } B_{i}}]
$$

where

$$
\widehat{D}_{\underline{C}, \underline{E}}^{I}(\sigma)=\bigwedge_{j=1}^{m} W_{i_{j}}, \quad \text { with } \quad W_{i_{j}}=\left\{\begin{array}{l}
C_{i_{j}} \text { if } i_{j} \in \sigma \\
E_{i_{j}} \text { if } i_{j} \in I-\sigma .
\end{array}\right.
$$

Extending from $(\underline{B \vee C}, \underline{B \vee E})$) to $(\underline{X}, \underline{A}))$)

We wish to use symmetric products to prove the following:
Theorem 3. Let K have m vertices and suppose that $(\underline{X}, \underline{A})$ is a family of pointed, path-connected pairs of finite CW-complexes.

Then there exist spaces

$$
B_{j}, C_{j}, E_{j}, \quad 1 \leq j \leq m
$$

which are finite wedges of spheres and mod- n Moore spaces so that

$$
H_{*}(\widehat{Z}(K ;(\underline{X}, \underline{A}))) \cong H_{*}(\widehat{Z}(K ;(\underline{B \vee C}, \underline{B \vee E})))
$$

over the integers.
Other computations: BBCG 2014, Qibing Zheng 2014

Symmetric products

Definition. Let $(X, *)$ denote a pointed topological space.

The m-fold symmetric product for $(X, *)$ is the orbit space

$$
S P^{m}(X)=X^{m} / \Sigma_{m}
$$

where the symmetric group on m-letters Σ_{m} acts on the left by permutation of coordinates.
There are natural maps

$$
\boldsymbol{e}: \begin{aligned}
S P^{m}(X) & \longrightarrow S P^{m+1}(X) \\
{\left[x_{1}, x_{2}, \ldots, x_{m}\right] } & \mapsto\left[x_{1}, x_{2}, \ldots, x_{m}, *\right]
\end{aligned}
$$

which allow for the definition of the infinite symmetric product as a colimit

$$
S P(X)=\underset{1 \leq m}{\operatorname{colim}} S P^{m}(X)
$$

Symmetric products

The next theorem is a version of a result due to Dold \& Thom. Theorem 3. Given a pointed, path-connected pair of finite CW-complexes $(X, A, *)$, then
(i) $S P(X)$ is homotopy equivalent to a product of EilenbergMacLane spaces

$$
\begin{aligned}
& \prod_{1 \leq q \leq \infty} K\left(H_{q}(X), q\right) \\
\Longrightarrow \quad & \pi_{i} S P(X) \cong \widetilde{H}_{i}(X) .
\end{aligned}
$$

(ii) When A is a closed subcomplex of X, the natural map

$$
S P(X) \longrightarrow S P(X / A)
$$

is a quasi-fibration with quasi-fibre $S P(A)$.

Symmetric products

A natural map
$S P^{q_{1}}\left(X_{1}\right) \wedge S P^{q_{2}}\left(X_{2}\right) \wedge \cdots \wedge S P^{q_{m}}\left(X_{m}\right)$

$$
\xrightarrow{\widehat{\boldsymbol{\theta}}} S P^{q}\left(X_{1} \wedge X_{2} \wedge \cdots \wedge X_{m}\right),
$$

is constructed for $q=q_{1} q_{2} \cdots q_{m}$ by setting

$$
\begin{gathered}
\widehat{\boldsymbol{\theta}}\left(\left[\left[x_{11}, x_{12}, \ldots, x_{1 q_{1}}\right],\left[x_{21}, x_{22}, \ldots, x_{\left.2 q_{2}\right]}, \ldots,\left[x_{m 1}, x_{m 2}, \ldots, x_{m q_{m}}\right]\right]^{\wedge}\right)\right. \\
=\left[\prod_{\substack{1 \leq j_{t} \leq q_{t} \\
1 \leq t \leq m}}\left[x_{1 j_{1}}, x_{2 j_{2}}, \ldots, x_{m j_{m}}\right]^{\wedge}\right]
\end{gathered}
$$

where square brackets [] are used to denote equivalence classes in the symmetric product, and []$^{\wedge}$ for the smash products.

Symmetric products and polyhedral products

The map $\widehat{\boldsymbol{\theta}}$ extends in a natural way to give a map of colimits
$S P\left(X_{1}\right) \wedge S P\left(X_{2}\right) \wedge \cdots \wedge S P\left(X_{m}\right)$

$$
\xrightarrow{\widehat{\boldsymbol{\theta}}} S P\left(X_{1} \wedge X_{2} \wedge \cdots \wedge X_{m}\right)
$$

This induces a structure map,

$$
\boldsymbol{\zeta}: \widehat{Z}(K ;(\underline{S P(X)}, \underline{S P(A)})) \longrightarrow S P(\widehat{Z}(K ;(\underline{X}, \underline{A}))) .
$$

in not an entirely obvious way.

A definition (which will not restrict us)

The pairs

$$
(\underline{U}, \underline{V}) \text { and }(\underline{X}, \underline{A})
$$

are said to have strongly isomorphic homology provided three things happen:
(1) There are isomorphisms of singular homology groups

$$
\alpha_{j}: H_{*}\left(U_{j}\right) \rightarrow H_{*}\left(X_{j}\right)
$$

and

$$
\beta_{j}: H_{*}\left(V_{j}\right) \rightarrow H_{*}\left(A_{j}\right)
$$

(2) There is a commutative diagram

where $\lambda_{j}: V_{j} \subset U_{j}$, and $\iota_{j}: A_{j} \subset X_{j}$ are the natural inclusions.

A definition

(3) There is an induced morphism of exact sequences for which all vertical arrows are isomorphisms:

where $\bar{\alpha}_{j}$ is induced by α_{j}.

Strongly isomorphic pairs are good because they ensure that everything behaves well with respect to the Künneth theorem.

A consequence of the definition

Lemma. Let $(\underline{X}, \underline{A})$, and $(\underline{U}, \underline{V})$ be pairs of pointed, path connected finite CW complexes.

Then, if they have strongly isomorphic homology groups, there is an isomorphism of singular homology groups

$$
\bar{H}_{*}\left(\widehat{D}_{(\underline{X}, \underline{A})}(\sigma)\right) \longrightarrow \bar{H}_{*}\left(\widehat{D}_{(\underline{U}, \underline{V})}(\sigma)\right) .
$$

for any face σ in the simplicial complex K,

Back to wedge decomposable pairs

Lemma. Let $(\underline{X}, \underline{A})$ consist of pointed, path-connected pairs of finite CW-complexes.

Then there exist wedges of spheres, and mod- p^{r} Moore spaces

$$
(\underline{B \vee C}, \underline{B \vee E})
$$

together with isomorphisms of singular homology groups

$$
\alpha_{j}: H_{*}\left(B_{j} \vee C_{j}\right) \rightarrow H_{*}\left(X_{j}\right)
$$

and

$$
\beta_{j}: H_{*}\left(B_{j} \vee E_{j}\right) \rightarrow H_{*}\left(A_{j}\right),
$$

which give strong homology isomorphisms.
The inclusions $E_{j} \rightarrow C_{j}$ are null-homotopic, so the pairs

$$
(\underline{B \vee C}, \underline{B \vee E})
$$

satisfy condition of wedge decomposability.

Getting the most out of a homology isomorphism

Suppose that $(\underline{U}, \underline{V})$ and $(\underline{X}, \underline{A})$ are pointed, connected, pairs of finite CW-complexes, with strongly isomorphic homology groups.

$$
\text { [We have in mind: }(\underline{U}, \underline{V})=(\underline{B \vee C}, \underline{B \vee E}) . \text {] }
$$

Then a multiplicative map of pairs

$$
g:(S P(U), S P(V)) \longrightarrow(S P(X), S P(A))
$$

exists inducing strongly isomorphic homology groups including a commutative diagram

$$
\begin{array}{ccc}
\bar{H}_{i}\left(S P\left(V_{j}\right)\right) & \xrightarrow{\lambda_{*}} \bar{H}_{i}\left(S P\left(U_{j}\right)\right) \\
\quad g_{*} \mid & & g_{*} \\
\bar{H}_{i}\left(S P\left(A_{j}\right)\right) & \xrightarrow{\iota_{*}} & \bar{H}_{i}\left(S P\left(X_{j}\right)\right)
\end{array}
$$

Getting the most out of a homology isomorphism

... and another for which all vertical arrows are isomorphisms:

$$
\begin{array}{ccccc}
\operatorname{ker}\left(\lambda_{*}\right) & \longrightarrow & \bar{H}_{i}\left(S P\left(V_{j}\right)\right) & \xrightarrow{\lambda_{*}} \bar{H}_{i}\left(S P\left(U_{j}\right)\right) & \longrightarrow \operatorname{coker}\left(\lambda_{*}\right) \\
g_{*} \downarrow & q_{*} \downarrow & \downarrow_{*} & \downarrow^{\bar{g}_{*}} \\
\operatorname{ker}\left(\iota_{*}\right) & \longrightarrow \bar{H}_{i}\left(S P\left(A_{j}\right)\right) \xrightarrow{\iota_{*}} & \bar{H}_{i}\left(S P\left(X_{j}\right)\right) & \longrightarrow \operatorname{coker}\left(\iota_{*}\right)
\end{array}
$$

where \bar{g}_{*} is induced by g_{*}.

Remark. The map g might not be homotopic to the one which is given automatically by virtue of the fact that $S P(X)$ is homotopy equivalent to a product of Eilenberg-MacLane spaces.

Applying the functor $\widehat{D}_{(-,-)}(\sigma)$ to the map of pointed pairs

$$
g:(\underline{S P(B \vee C)}, \underline{S P(B \vee E)}) \longrightarrow(\underline{S P(X)}, \underline{S P(A)})
$$

(which induces a strong isomorphism in homology),
we get a morphism

$$
\widehat{D}_{(\underline{S P(B \vee C)}, \underline{S P(B \vee E)})}(\sigma) \xrightarrow[\simeq]{\underline{D}(\sigma ; g)} \widehat{D}_{\underline{(S P(X),}, \underline{S P(A))}}(\sigma)
$$

and, for each $\tau \subset \sigma$, a commutative diagram

$$
\begin{aligned}
& \widehat{D}_{(\underline{S P(B \vee C)}, \underline{S P(B \vee E))}}(\sigma) \xrightarrow[\simeq]{\widehat{D}(\sigma ; g)} \widehat{D}_{(\underline{S P(X), \underline{S P(A))}}}(\sigma)
\end{aligned}
$$

Getting the most out of a homology isomorphism

Further there are induced morphisms of commutative diagrams via the structure map ζ.

$$
\begin{aligned}
& \widehat{D}_{(\underline{S P(B \vee C)},}, \frac{S P(B \vee E))}{}(\sigma) \simeq \widehat{D}_{(\underline{S P(X),},} \frac{\widehat{S P(A)}}{}(\sigma) \\
& \\
& S P\left(\widehat{D}_{(\underline{B \vee C}, \underline{B \vee E)}}(\sigma)\right) \longrightarrow S P\left(\widehat{D}_{(\underline{X}, \underline{A})}(\sigma)\right)
\end{aligned}
$$

where the lower horizontal arrow is a homotopy equivalence by the Dold-Thom theorem.

A conclusion

So, there is a map

$$
\begin{gathered}
S P\left(\cup_{\sigma \in K} \widehat{D}_{(\underline{B \vee C}, \underline{B \vee E)}}(\sigma)\right) \xrightarrow{\mu} S P\left(\cup_{\sigma \in K} \widehat{D}_{(\underline{X}, \underline{A})}(\sigma)\right) \\
\downarrow= \\
\qquad \text { ป } \\
S P(\widehat{Z}(K ;(\underline{B \vee C}, \underline{B \vee E}))) \xrightarrow{\mu} S P(\widehat{Z}(K ;(\underline{X}, \underline{A})))
\end{gathered}
$$

Finally, we invoke Quillen's Projection Lemma to conclude the proof.

Projection Lemma

Lemma. Let \mathcal{D} and \mathcal{E} be finite diagrams of finite CW complexes over the same finite category \mathfrak{C}, satisfying:
(i) All inclusions in the intersection poset are closed cofibrations.
(ii) We have colimits

$$
U=\bigcup_{\alpha \in \mathfrak{C}} D_{\alpha} \quad \text { and } \quad X=\bigcup_{\alpha \in \mathcal{C}} E_{\alpha}
$$

(iii) There is a map

$$
\mu: S P(U) \longrightarrow S P(X)
$$

which restricts to homotopy equivalences on

$$
\left.\mu\right|_{S P\left(D_{\alpha}\right)}: S P\left(D_{\alpha}\right) \longrightarrow S P\left(E_{\alpha}\right)
$$

Then μ is a homotopy equivalence.

An example with numbers

Consider the composite

$$
f: \mathbb{C} P^{2} \hookrightarrow \mathbb{C} P^{3} \rightarrow \mathbb{C} P^{3} / \mathbb{C} P^{1}
$$

and denote the mapping cylinder of f by M_{f}.
We shall describe describe the Poincaré series of $\widehat{Z}\left(K ;\left(M_{f}, \mathbb{C} P^{2}\right)\right)$ for any for the special case

$$
K=\left\{\left\{v_{1}\right\},,\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\}\right\} .
$$

An example with numbers

For $(X, A)=\left(M_{f}, \mathbb{C} P^{2}\right)$, we have

$$
(U, V)=\left(S^{4} \vee S^{6}, S^{4} \vee S^{2}\right)
$$

so that

$$
B=S^{4}, C=S^{6} \text { and } E=S^{2}
$$

The theorem gives:

$$
\widetilde{H}^{*}\left(\widehat{Z}\left(K ;\left(M_{f}, \mathbb{C} P^{2}\right)\right)\right) \cong \widetilde{H}^{*}(\widehat{Z}(K ;(B \vee C, B \vee E)))
$$

An example with numbers

Applying the Cartan decomposition we get:

$$
\begin{aligned}
\widehat{Z}(K ;(B \vee C, B \vee E)) & \stackrel{\simeq}{\rightarrow} \bigvee_{I \leq[m]} \widehat{Z}\left(K_{I} ;\left(S^{6}, S^{2}\right)\right) \wedge \widehat{Z}\left(K_{[m]-I} ;\left(S^{4}, S^{4}\right)\right) \\
& =\bigvee_{I \leq[m]} \widehat{Z}\left(K_{I} ;\left(S^{6}, S^{2}\right)\right) \wedge\left(S^{4}\right)^{\wedge \mid[m]-I \|}
\end{aligned}
$$

The Wedge Lemma decomposes

$$
\widehat{Z}\left(K_{I} ;\left(S^{6}, S^{2}\right)\right)
$$

further by enumerating all the links $\left|l k_{\sigma}\left(K_{I}\right)\right|$. The reduced Hilbert-Poincaré series for $\widehat{Z}(K ;(B \vee C, B \vee E))$, and hence for $\widehat{Z}(K ;(\underline{X}, \underline{A}))$ is

$$
\begin{aligned}
& \bar{P}(\widehat{Z}(K ;(B \vee C, B \vee E)), t) \\
& \quad=\sum_{I \leq[m]}\left[\sum_{\sigma \in K_{I}}\left[t \cdot \bar{P}\left(\left|\mathrm{k}_{\sigma}\left(K_{I}\right)\right|, t\right) \cdot \bar{P}\left(\widehat{D}_{\underline{S^{6}}, \underline{S^{2}}}^{I}(\sigma), t\right)\right] \cdot \prod_{j \in[m]-I} \bar{P}\left(B_{j}, t\right)\right]
\end{aligned}
$$

An example with numbers

The cohomology of $\left(M_{f}, \mathbb{C} P^{2}\right)$ satisfies

$$
\left.H^{*}\left(M_{f}\right)=\mathbb{Z}\left\{b_{4}, c_{6}\right\} \quad \text { and } \quad H^{*}\left(\mathbb{C} P^{2}\right)\right)=\mathbb{Z}\left\{e_{2}, b_{4}\right\}
$$

where the dimensions of the classes are given by the subscripts.
The classes $\left\{e_{2}, b_{4}, c_{6}\right\}$ supported on the vertex i are denoted

$$
\text { by }\left\{e_{2}^{i}, b_{4}^{i}, c_{6}^{i}\right\}
$$

We illustrate the computation by determining the summand corresponding to

$$
I=\{2,3\} \quad \text { and } \quad \sigma=\varnothing .
$$

An example with numbers

In this case, $I=\{2,3\}$ and $\sigma=\varnothing$. we have:
(i) $\widehat{D}_{\underline{C}, \underline{E}}^{I}(\sigma)=E_{2} \wedge E_{3}=S^{2} \wedge S^{2} \quad$ and $\quad \widetilde{H}\left(\widehat{D}_{\underline{C}, \underline{E}}^{I}(\sigma)\right)=k\left\{e_{2}^{2} \otimes e_{2}^{3}\right\}$ and so we get $\bar{P}\left(\widehat{D}_{\underline{S^{6}}, \underline{S}^{2}}^{I}(\sigma), t\right)=t^{4}$.
(ii) Next, since $[m]-I=\{1\}$, we have:

$$
\prod_{j \in\{1\}} \bar{P}\left(B_{j}, t\right)=\bar{P}\left(B_{1}, t\right)=\bar{P}\left(S^{4}, t\right) \Longrightarrow \bar{P}\left(b_{4}^{1}, t\right)=t^{4}
$$

(iii) Turning to the links,

$$
\left|l k_{\varnothing}\left(K_{I}\right)\right|=|\{\{2\},\{3\}\}|=S^{0}
$$

so that $t \cdot \bar{P}\left(\left|l k_{\varnothing}\left(K_{I}\right), t\right|\right)=t$.

An example with numbers

Finally, for the case at hand, we get a contribution of t^{9} to the Poincaré series for $H^{*}(\widehat{Z}(K ;(\underline{X}, \underline{A})))$.

Continuing in this way, we arrive at the (reduced) Poincaré series:

$$
\bar{P}\left(H^{*}\left(\widehat{Z}\left(K ;\left(M_{f}, \mathbb{C} P^{2}\right)\right), t\right)=t^{9}+t^{11}+3 t^{12}+5 t^{14}+2 t^{16}\right.
$$

