the induced isometry of $H^2(S, \mathbb{Z})$ does not depend on the homotopy does of the loop. So we have : $\mathcal{T}_1(B,t) \longrightarrow Aut(H^2(S,\mathbb{Z}))$. this homomorphism is called the monodromy representation of

Rock: An isometry of HP(S,R) has spinor norm 1 if and
only if it preserves be orientation of containing positive
3-subspace.

$$S^2 > 0$$
, take a positive 3-subspace Containing S.
 $W = W_0 \oplus R_S$, $\dim_R W_0 = 2$.
 $S_S : SH - 3$. fix elements in W_0 .
 $S_S : W \longrightarrow W_0$, change orientation.
(So the spinor norm of Ss should be -1)
 $S^2 < 0$, take $W = S^2$
 $positive 3-subspace$
then S_S fixes W , hence fixes the orientation.
So SS should have spinor norm 1.
Proof of the Then (Mon(S) = Aust (H^2(S, Z)));
Aust (H^2(S, Z)) is the kernel of Aust (H^2(S, Z)) \rightarrow (Ft)?,
has index the in Aust (H^2(S, Z)),
First we show; for any $S \in H^2(S, Z)$ with $S^2 = 2$,
we have $S_S \in Mon(S)$.
 $S = (M, I)$, $S \in H^2(M, Z)$.

define I to I,
$$(M, I')$$
 is a new RS surface such that
Pic $(M, I') = IS$ (need to use the surjectively of
 $g, N \rightarrow D$)
[Let $H^{2^{n}}(M, I')$ be a generic element in S^{1} in D_{RS}]
 $g \Rightarrow r - S$ is represented by a H^{2} on (M, I') .
We $G(g, S = [c], C \in P'$.
 $H^{2}(D \rightarrow H'(S) + H^{2}(S)$
 $H^{2}(D \rightarrow H'(S) + H^{2}(S) = H^{2}(S) + \frac{1}{2}S^{2} = 1$
 $\Rightarrow H^{2}(S) + \frac{1}{2}S^{2} = 0$
 $X \text{ con fit into a proper flat family X with $X = X$
 $A = X$
 $fiber of X = X$ one A KS surface with underlying maniful M
 $A = X$
 $fiber of X = X$ one A KS surface with underlying maniful M
 $A = X^{2}$
 $= 1$
 $A = X^{2}$
 $A = A^{2}$$

Solution go book by t, f is charged to - f.
So
$$(S,f)$$
, $(S,-f)$ as points in N, lie in one
connected component,
Note that (S,f) and $(S,-f)$ has some period in D.
 $E\left\{U^{1,0}(S)\right\} = -E(U^{1,0}(S))\right]$.
By isomorphism between connected component of N and D,
we know (S,f) and $(S,-f)$ represent the Same point in N
we know (S,f) and $(S,-f)$ represent the Same point in N
we know (S,f) and $(S,-f)$ represent the Same points in N,
ethermise, $\Xi S\Xi S$ induces -id on $H^2(S,Z)$.
But Kählut one is such to Kählut owne, impossible.
So (S,f) , $(S,-f)$ are different but inseparate points in N,
 $E[Len: If (Sisti), (Sustic)$ are different, inseparate points in N,
then Si, Si has non-serv Pin].
If S is chosen generically at beginning, the one already see
(untradiction \Longrightarrow -id \notin Man(S).

The statement
$$-id \notin Man(S)$$
 when voit depend on the choice of
So fit any S, $-id \notin Man(S)$.
=) Man(S) = Aut⁺(H²(S,Z)).
Corollary: N and N have two connected components.
off: FixS, a marking f,
(S,F), (S,F) die in different connected components of N,
take a family G b b
 $B \ni t d_1$
 $S = \begin{cases} S_1 \\ S_2 \\ \\ S_1 \\ S_2 \\ S_2 \\ S_1 \\ S_2 \\ S_1 \\ S_2 \\ S_2 \\ S_1 \\ S_1 \\ S_1 \\ S_2 \\ S_1 \\ S_1 \\ S_1 \\ S_2 \\ S_1 \\ S_1 \\ S_1 \\ S_1 \\ S_1 \\ S_2 \\ S_1 \\ S_1 \\ S_1 \\ S_1 \\ S_1 \\ S_2 \\ S_1 \\ S$

Lon: (SI, fi), (SI, fi) EN distint, inseparable, then $S_1 \cong S_2$ and $\mathcal{P}(S_1, f_1) = \mathcal{P}(S_2, f_2)$ is contained in at for some ot & E MK3. Pf; (SI,JI) and (SI,JL) are inseparately S_{n} f_{2} f_{2} S_1 \cdots S_t , f_1 (S_{t_i}, f_1) and (S_{γ_i}, f_1) represent the same point in IVJ Y: Sti = Sri, with $\begin{array}{c} H^{2}(S_{ti}, \mathbb{Z}) & \overbrace{f_{1}} \\ \uparrow & \swarrow^{*} & 2 & \overbrace{f_{2}} \\ H^{2}(S_{ri}, \mathbb{Z}) & \overbrace{f_{2}} \end{array} \right)$ graph of ti: Ti= { (x, tion) | x e Sti } C Sti × Sti. Let $i \rightarrow \infty$, then $\Gamma_i \rightarrow \Gamma_\infty < S_1 \times S_2$. here Γ_{∞} is an analytic cycle in $S_1 \times S_2$ [Repoport - Burns], see also [Luoijunga - Jeters 1980 cump o sitio Torelli theorems for Kähler K3 surfacy]

Bishup 1764; to show Fao has analytic structure.
need to show Fi has finite volume.
Fao = Z +
$$\sum_{i=0}^{k} (C_i \times C_i')$$
. Z is a graph for an isom $S_i = S_i - S_i - C_i -$