Today: global Torelli Theorem for complex $k 3$ surfaces.
(Rapoporf, Burns 1975)
First we dis curs monodroryy group of complex kS.
Fix a complex kJ surface S.
Consider a family $\underset{\substack{~}}{b}$ of $k 3$ surfaces.

$$
\left\{\begin{array}{lll}
s & \downarrow \\
B & \ni & t \\
\text { smooth, proper. }
\end{array}\right.
$$

have a group homomorphism $\pi_{1}(B, t) \rightarrow \operatorname{Aut}\left(H^{2}(S, \mathbb{Z})\right)$

a loop based on $t \sim$ homeoomumphism from S to S Smooth wop. differmorphism.
this indue e an isomorphism $H^{2}(S, \mathbb{Z}) \equiv H^{2}(S, \mathbb{Z})$
as $k 3$ lattice.
the indued isometry of $H^{2}(S, \mathbb{Z})$ does not depend on the homotopy clams of the lap.
So we have: $\pi_{1}(B, t) \rightarrow$ Ant $\left(H^{2}(S, \mathbb{Z})\right)$.
this homomorphism is called the monodromy representation of
$\pi(B, t)$, ancl the image is calleel the monodromy grip of $\begin{gathered}\checkmark \\ \downarrow \\ B .\end{gathered}$
All possible sch groups generated a subgroup $\operatorname{Man}(S) \subset \operatorname{Aut}\left(H^{2} \mid S, \mathbb{Z}\right)$)
We call MVon(S) the monodromy group of S.
Tho: $\operatorname{Mon}(S)=\operatorname{Aut}^{+}\left(H^{2}(S, \mathbb{Z}) \subset \operatorname{Aut}\left(H^{2}(S, \mathbb{Z})\right)\right.$.
Here, $\operatorname{Aut}^{+}\left(A^{2}(S, \mathbb{Z})\right.$) is the group of isometries of
$H^{2}(5,2)$ preserving the orientation of a positive 3-subspone of $H^{2}(S, \mathbb{R})$.

Spinor norm: $\quad \delta \in\left(\Lambda_{\mathbb{B}}\right)_{\mathbb{R}}, \quad \delta^{2} \neq 0$,
can define reflection $\delta_{\delta}: v \longmapsto v-2 \frac{(v, \delta)}{\delta^{2}} \cdot \delta$.

$$
\left[S_{\delta}(\delta)=-\delta, \quad S_{\gamma}(v)=-v \text { if } v \neq \delta\right] .
$$

define the spinor norm of δ_{δ} to be $\left\{\begin{array}{cl}-1 & \text { if } \delta^{2}>0 \\ 1 & \text { if } \delta^{2}<0 \text {. }\end{array}\right.$
The (artan-Diendonné): any isometry of $\left(\Lambda_{k 3}\right)_{\mathbb{R}}$ car be written as a composition of finitely many reflection.
\Rightarrow we have a well-defined group homomorphism

$$
\operatorname{Aut}\left(\left(\Lambda_{k 3}\right)_{\mathbb{R}}\right) \longrightarrow\{ \pm 1\}
$$

such that $S_{\gamma} \longrightarrow\left\{\begin{array}{cl}-1 & \delta^{2}>0 \\ 1 & \delta^{2}<0 .\end{array}\right.$
the image of an isometry in $\{ \pm 1\}$ is calleel its spinorworm.

Rok: An isometry of $H^{2}(S, R)$ has spinor norm 1 if anil only if it preserves the orientation of certain positive 3- subspace.
$\delta^{2}>0$. take a positive 3- sub spode ${ }^{w}$ containing δ.

$$
W=W_{0} \oplus \mathbb{R} \delta, \quad \operatorname{dim}_{\mathbb{R}} W_{0}=2
$$

$S_{\delta}: \delta\left(\rightarrow-\delta\right.$, fix elements in W_{0}.
Ss: $W \longrightarrow W$, change orientation.
[So the spinor norm of S_{γ} should be -1]

$$
\delta^{2}<0 \text {, take } W \subset \delta^{1}
$$

positive 3-sursporce
then S_{δ} fixes W, hence fixes the orientation.
So So should have spinor worm 1 .
Proof of the $\operatorname{Thm}\left(\operatorname{Mor}(S)=\operatorname{Ant}^{+}\left(H^{2}(S, \mathbb{Z})\right)\right.$.
$\operatorname{Aut}^{+}\left(\mathrm{H}^{2}(S, 2)\right)$ is the Kernel of $\operatorname{Aut}\left(H^{2}(S, 2)\right) \rightarrow\{ \pm 1\}$,
has index two in $\operatorname{Aut}\left(H^{2}(s, \mathbb{Z})\right.$),
First we stow: for any $\delta \in H^{2}(S, \mathbb{Z})$ with $\delta^{2}=-2$, we have $S_{\delta} \in \operatorname{Mon}(\delta)$.

$$
\delta=(M, I), \quad \delta \in H^{2}(m, \mathbb{Z})
$$

deform I to $I^{\prime},\left(M, Z^{\prime}\right)$ is a new RS surface sue that
$\operatorname{PiL}\left(M, I^{\prime}\right)=\mathbb{Z} \delta \quad$ (need to use the surjeativity of

$$
\oint: N \rightarrow D)
$$

[let $H^{2,0}\left(M, I^{\prime}\right)$ be a generic element in δ^{\perp} in $D_{K S}$]
δ or $-\delta$ is repented ty a \mathbb{P}^{\prime} on $\left(M, I^{\prime}\right)$.

$$
\text { wog, } \quad \delta=[c], \quad c \cong \mathbb{P}^{\prime}
$$

$\exists\left(M, I^{\prime}\right) \rightarrow X$, analytic morphition to a complex surface X with one nodal point.
here C is contracterl to the rode.
locally needed the node, X is lefinineal try equaston $x^{2}+y^{2}+z^{2}=0$
x can fit into a proper flat family X with $x_{0}=x$ $\triangle \ni 0$ and $\begin{array}{rr}x-x \\ \downarrow & \text { is smooth. } \\ \Delta-0\end{array} \quad$ sworn
fiber of $\underset{\Delta-0}{\perp-\lambda}$ are $N K 3$ surface with underlying mamifole M
 locally $x^{2}+y^{2}+z^{2}=t$

$$
t=u^{2}
$$

$$
x-x<(x-x) \times \Delta^{*}
$$

$$
\Delta^{*}=\Delta-0
$$

$$
\Delta^{*}<\sum_{1: 2} \Delta^{*}
$$

$(x-x) \nless \Delta^{*}$ can be completer into a soon proper

$$
\Delta^{*}
$$

family of $k 3$ surfaces over Δ.
\Rightarrow the mondrony for $\begin{gathered}x-x \\ \downarrow \\ \Delta^{*}\end{gathered}$ is a reflection in δ.
[Pibarl-Lefstiry formula].
So So $t \operatorname{Mon}(s)$.
any element in
Wal, Ebeling, Kneser: $\operatorname{Aut}^{+}\left(H^{2}(S, \mathbb{Z})\right.$) ca be written ar a product of finitely many reflections in (-2)-classes.
$\Rightarrow \operatorname{Mon}(S) \supset \operatorname{Aut}^{+}\left(\mathrm{H}^{2}(s, \mathbb{Z})\right)$.
So either $\operatorname{Man}(S)=$ Aus t or $\operatorname{Mon}(S)=$ Rut
Claim: -id $\notin \operatorname{Mon}(s)$.
otherwise, there exists a family

| s | s |
| :--- | :--- | :--- |
| \downarrow | \downarrow |
| B | ∂t |,$\quad a \quad$ smooth

wop based on t, giving rise -ill. take a marking $f: H^{2}(S, \mathbb{Z}) \rightarrow N_{k 3}$.
extencl the marking along the loop:

when go bark to t, f is charger to $-f$.
So $(S, f),(S,-f)$ as points in N, lie in one connected component,
Note that (S, f) and $(S,-f)$ has sure period in D.

$$
\left[f\left(H^{2,0}(s)\right)=-f\left(H^{2,0}(s)\right)\right]
$$

By isomaphism between connected component of \bar{N} and D, we know (S, f) and $(S,-f)$ represent the same point in \bar{N} Note that (S, f) and $(S,-f$) represent different points in N. otherwise, $\exists S \stackrel{\cong}{\leftrightarrows} S$ indues ill on $H^{2}(S, Z)$.

But Kähler cone is Sent to Kcimor cone, impossible. So $(S, \delta),(S,-\delta)$ are different but inseparable points in N,
[Lem: if $\left(S_{1}, \delta_{1}\right),\left(S_{2}, f_{2}\right)$ are different, inseparable jots in N, the $S_{1} S_{2}$ has nonzero $P_{i}[]$.
If S is chosen generically at beginning, the we abreuly see contradiction \Rightarrow-il $\notin \operatorname{Mon}$ (S).

The statement -id $\notin \operatorname{mon}(s)$ clues not depend on the choice of
So for any $S,-$ il $\& \operatorname{Mon}(S)$.

$$
\Rightarrow \quad \operatorname{Mon}(S)=\operatorname{Aut}^{+}\left(H^{2}(S, \mathbb{Z})\right)
$$

Corollary: N and \bar{N} have two corrected components.
Pf: Fix, a marking f,
$(S, \delta),(S,-\delta)$ lie in different connenterl components of N, take $\left(S_{1}, f_{1}\right) \in N$.
take a family $\begin{aligned} & \mathcal{S} \\ & \downarrow \\ & B\end{aligned}>t \begin{array}{lll} & \downarrow & \downarrow\end{array}$

$$
B \rightarrow t \quad t_{1}
$$

extend f along the path, get marking f_{2} on S,
f_{1}, f_{2} two markings of S_{1},

$$
f_{1}^{-1} \circ f_{2} \in \operatorname{Aut}\left(H^{2}\left(S_{1}, \mathbb{Z}\right)\right)
$$

either $f_{1}^{-1} \circ f_{2}$ \& Ant ${ }_{11}$, or $-f_{1}^{-1} \circ f_{2} \in$ Aus $^{-1}$.

$$
\begin{array}{ll}
11 & 11 \\
\operatorname{Mon}\left(S_{1}\right) & \operatorname{Mon}\left(S_{1}\right)
\end{array}
$$

If $f_{1}^{-1}, f_{2} \in \operatorname{Mon}\left(S_{1}\right) \Rightarrow\left(S_{1} f\right),\left(S_{1}, f_{1}\right)$ are connected in N if $-f_{1}^{-1} \circ f_{2} \in \operatorname{Mon}\left(S_{1}\right) \Rightarrow(S,-f),\left(S_{1}, f_{1}\right)$ are connetcel.

Lem: $\left(S_{1}, f_{1}\right),\left(S_{2}, f_{2}\right) \in N$ distinct, inseparable, then $S_{1} \cong S_{2}$ and $\phi\left(S_{1}, f_{1}\right)=\rho\left(S_{2}, f_{2}\right)$ is contained in α^{\perp} for some $0 \neq \alpha \in M_{k 3}$. Pf: $\left(S_{1}, f_{1}\right)$ and $\left(S_{2}, f_{2}\right)$ are in separable,
 f_{2}.
$\left(S_{t_{i}}, f_{1}\right)$ and $\left(S_{r_{i}}, f_{2}\right)$ represent the some point in Э $\psi_{i}: S_{t_{i}} \equiv S_{r_{i}}$, with

graph of $\psi_{j}: \Gamma_{i}=\left\{\left(x, \psi_{i}(x)\right) \mid x \in S_{t_{i}}\right\} \subset S_{t i} \times S_{r_{j}}$.
Let $i \rightarrow \infty$, then $\Gamma_{i} \rightarrow \Gamma_{\infty}<S_{1} \times S_{2}$.
here Γ_{∞} is an analytic cycle in $S_{1} \times S_{2}$
[Repoport - Burry]. see also [Looijinga - Peters 1980 comp ositio Torelli theorems for Kähler kS surffayy

Bishop 1964; to show Γ_{∞} has analytic Strusure. need to show Γ_{i} has finite volume.
$\Gamma_{\infty}=Z+\sum_{i=0}^{K}\left(C_{i} \times C_{i}^{1}\right) . \quad Z$ is a graph for an isom $S_{1} \cong \tilde{=} S_{2}$ $C_{i} \subset S_{1}, C_{i}^{\prime}<S_{l}$ have dimension
$\left[\Gamma_{\infty}\right]: H^{2}\left(S_{1}, \mathbb{Z}\right) \stackrel{\cong}{\rightrightarrows} H^{2}\left(S_{2}, \mathbb{Z}\right)$
is equal to $f_{2}^{-1} \cdot f$,
If no C_{i}, C_{i}^{\prime}, then $[2]=f_{L}^{-1} \circ f_{1}$.
$\Rightarrow f_{2}^{-1} f_{1}$ is indueat by an Dom between S_{1}, S_{1}.
$\Rightarrow\left(S_{1}, f_{1}\right),\left(S_{2}, f_{2}\right)$ represent the same point in N, continculiction.

So C_{i}, c_{i}^{\prime} exist.
$\Rightarrow P_{i}\left(S_{1}\right), P_{i}\left(S_{2}\right)$ nonzero.

