Lecture I7 II May 2022
Thme (Γ, r) and $u \in D \quad(u: V \rightarrow \mathbb{R}$, with finite emans), Then for almost evary ane-soded paith p in 8 , $u(x)$ connones as x tonds to ∞ along p.

Pt picle a $\in V$ and $P_{a}=$ set of all one-sided paths sturring at a. $\left.{ }^{a} \quad \begin{array}{l}\text { a } \\ \left(x_{0}, x_{1}, x_{2}\right.\end{array}, \ldots\right)$
Detime $P \subset P_{a}$ whiun contions all paths $\ddot{p} \in P_{a} \leqslant t$
(*) $\sum_{j=1}^{\infty}\left|u\left(x_{j}\right)-u\left(x_{j-1}\right)\right|<\infty$.

Ihew: $\quad P_{a} \doteq(P) \cup\left(P_{a}-P\right)$
Cloim: (1) rimu exists for all poths in P.
(2) $\lambda\left(p_{a}-p\right)=\infty$

Proot of (1): $u\left(x_{n}\right)-u(a)=\sum_{j=1}^{n} u\left(x_{j}\right)-u\left(x_{j-1}\right)$
Along $p \in \mathbb{D},(*) \Rightarrow\left\{u\left(x_{n}\right)\right\}$ is Cauchy-sequice \Rightarrow limit exists.

Proot of (2): Consider I 1-chann g'ren by

$$
I(x y)=c(x y)(u(x)-u(y))
$$

$$
W(I)=D(u)<\infty
$$

For any $p \in P_{a}-P$

$$
\begin{aligned}
& L_{I}(p)=\sum_{x y \in \Delta(p)} r(x, y)|I(x, y)| \\
& =\sum_{x y=(\Sigma \bar{p})} v(x y y \cdot \operatorname{b(xy})|u(x)-u(y)| \\
& \rightarrow \infty \text {, } \\
& \Rightarrow \quad L_{I}\left(P_{a}-p\right)=\inf _{p \in P_{a}-p} L_{I}(p)=\infty \text {. } \\
& \lambda\left(P_{a}-P\right)=\sup _{I m p l o w l} \frac{L_{I}\left(P_{a}-P\right)}{W(I)} \geq \frac{L_{I}^{2}\left(P_{a}-P\right)}{W(I)}=\infty .
\end{aligned}
$$

Consider $\quad \bigcup_{a \in v} P_{a}$ set ot all one sided paths \bar{P} set of cree sided piths where the imit does nat conure

$$
\begin{aligned}
& \frac{1}{\lambda(\bar{P})} \quad \leq \sum_{a \in V} \frac{1}{\lambda\left(P_{n} n \bar{P}\right)}=0 \\
& \Rightarrow \quad \lambda(\bar{P})=\infty .
\end{aligned}
$$

$\operatorname{Thm} \quad[\Gamma, r), \quad U \in D_{0} \quad\left(\begin{array}{lll}\exists u_{n}: v \rightarrow \mathbb{R} & \text { with finite } \\ \lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|=0\end{array}\right)$
Then for every aGV, almost rover path in P_{a} we bare

$$
\lim U(x)=0
$$

as x tends to ∞ along p.

$$
\left\|u_{k}-u\right\|=\sqrt{\left(u_{k}(0)-u(0)\right)^{2}+D\left(u_{k}-u\right)}
$$

If P cuntions intintte puths struing in Exerobte: a compait set, then $\lambda(\mathbb{P})=\infty$,

$$
\begin{aligned}
& \frac{L}{\lambda(P)}=\inf _{\operatorname{Lin}_{\sigma}^{*}(D)=1} \operatorname{Area}(\sigma) \\
& \lambda(\mathbb{P})=\sup _{\sup _{\sigma}^{\sigma}(\theta)=1} \operatorname{L\sigma }(\mathbb{P}) .
\end{aligned}
$$

$$
\lambda(R)<\infty
$$

$\lambda(\mathbb{D})$ isnne the "hale"
Thm (Γ, r) lucully finite tramisont, bet $u \in H D$,
If \exists conit c s.t.
$\lim u(x)=c$
along the vertices of alsnut every one-sided pith

$$
\Rightarrow \quad u(x)=c \quad \forall x \in V .
$$

Corrllay,
$f \in D$ belmgs to D_{0}
$\Leftrightarrow \quad \lim f(x)=0$ as $x \rightarrow \infty$ aleng almost every one-sided paths.

$$
D f: \quad f=(u)_{\text {HD }}+(v)_{D_{\theta}}
$$

Remarks:

$$
\begin{aligned}
& Z \quad \text { collection of all }{ }^{\text {finite. }} \text { cycles } \\
& \text { i.e. } I \in Z \Leftrightarrow \\
& \Leftrightarrow I=0 \\
& \sum_{y} I(y y)=0 \quad \forall x \in V .
\end{aligned}
$$

$Z \subset Z^{*}$ collector of all cycles, infinite or frailty,
Lemma: $(*)\left\{\begin{aligned} \partial I=0 & \forall x \in V \\ \langle I, z\rangle=0 & \forall \text { finite cqules } z\end{aligned}\right.$
has only trivial sulutions $\Leftrightarrow \quad z=z^{*}$
$\Leftrightarrow \quad$ recurrent
Pf: If $Z^{*} \neq z \Rightarrow I \in Z^{*}$ and $I \perp Z$. nen-triulal

$$
\Rightarrow \quad I \text { solhes } \quad(+)
$$

Thm (-) has towial soluss in H_{1}
\Leftrightarrow for any $a, h \in V$, the nimit urmant and the minimal curvent gowerated $\tau=\delta_{a}-\delta_{b}$ coinnides.

Dets. O_{G} cillection (Γ, r) recurrent.
OBIt clleiden at (Γ, r) s.t. every brandel harmic function is constant.
O_{i+h}
Its........ St. eveny hammank Disichlet function is crustant.

Clarsification of electici neturrics / Riemannan mods.

O_{G}
Recall! (1) Recurrent \Rightarrow positive superharminic is cont.
\Rightarrow harmenil Dirichlet function is coustact.

$$
\Rightarrow \quad O_{G} \quad \subset \quad O_{I+D}
$$

(2). every $u \in H D$ can be approometed by a sequence of biundrd harmenic Dirichet function-

$$
\Rightarrow \quad(\Gamma, r) \notin O_{H D} \quad \Rightarrow \quad(I, r) \notin O_{B H} .
$$

$$
\Rightarrow \quad O_{B H} \subset O_{H D} .
$$

