Today: complex projective surface.
Enrigues - Kodaira classification.
Complex surface: complex manifold of dimension 2
Complex projective surface is a nonmatex surface that
can be embedded how murpherally into CPN
E9. hypersurfaces of CP³.
Complete intersections in CPN
of dim 2
Through two leabure, we use S to denote a complex
S can be regarded as a 4- mfd.
Compart
We have . Y:
$$(H^2(S, Z)_F) \times H^2(S, Z)_F \longrightarrow Z$$

 $R_1 \otimes I \longrightarrow S_S \approx P \in \mathbb{Z}$.
This is a num-degenerate, belinear form .
My Pancare during fore part of H²(S, Z)
it is unimodular $e_1 - e_2$
(inc. con find a Z-bros of H²(S, Z)_F, such that
the intersection matrix
(Plene) Y10,100 m has det = 11.

$$\mathcal{Y}(l_i, l_j)$$
 $\mathcal{K}_{\mathbf{x}, \mathbf{k}}$

[we a fine resolution
$$\Lambda^{p,q}(M) = \dim_{Q} H^{p,q}$$
.]

For lamplex surfaces, we have the fullowing Hudge diamond,

$$h^{0.0}$$

 $h^{0.0}$
 $h^{0.0} = h^{0.1} = 1$, $h^{0.0} = h^{0.1}$, $h^{0.1} = h^{0.1}$
 f by Poincaré duckity)
enough to book ext:
 $h^{0.0}$
 $h^{0.0}$

enough to look at
$$h^{0,\sigma} = 1$$
, $h^{1,\sigma}$, $h^{2,\sigma}$, $h^{1,1}$
 $h^{0,1}$, $h^{0,2}$
A complex $proj.$ surface is but matically the relation theorem
to the Fubini- study metric.
X typolosical space, cherete my bills) = ching HIX, IR)
the bold humbers.
for M complex manifold, the usually cherete my
 $g = h^{1,\sigma}$ and call it irregular. h
If $g = \sigma$, we call M regular.
M complex monifold, km : converted line buille
Phi dima $H^0(M, Km)$ called n-th plusigeness of M
S surface. $P_1 = h^o(S, Km) = h^o(D, \Omega^2 S) = h^{2,0}$.
K: Kodairan dimension of M,
 $K = -\infty$ If $P_n = v$, $\forall n$.
Otherwise, K is the minimal integer such that
 $\left(\frac{P_0}{n^K}\right)_n$ is bounded.
Fast: $k = -\infty$ or $k \in \{0, 1, ..., den M$, for

M a complex algebraic variety

$$E Remain Rich]$$

$$\int complex surface, K \in \{-\infty, 0, 1, 2\},$$
for complex vertor bundles over a small manifield M
E
Chern classed C₁(E) \in H²¹(M, Z).
Chern programmal C(E) = 1+ C₁ t + C₂t²+...
L, L¹ complex line bundles.

$$C(L) = 1+C(L) t$$

$$\neq C_{1}(L \otimes L^{1}) = C_{1}(L) + C_{1}(L^{1}).$$

$$X \mapsto E_{1} \rightarrow E \rightarrow E_{2} \rightarrow 1 \quad \text{fixed sequence}$$
then $C(E) = C(E_{1}) (C(E_{2}).$
M: complex vertor bundle.

$$C_{1}(E) = C_{1}(E) = C_{2}(E) (C(E_{2}).$$

$$M: complex vertor bundle.
$$C_{1}(E) = C_{1}(E) = C_{1}(E_{2}).$$

$$M: complex vertor bundle.
$$C_{1}(E) = C_{1}(E) = C_{1}(E_{2} - C_{1}(E_{2} - C_{1}(E_{2})) = C_{1}(E_{2} - C_{1}) = C$$$$$$

TS: how tangent bundle.

$$k = (A^{2}TS)^{2}.$$

$$C_{1}(TS) = : C_{1}(S) \qquad C_{1}(S) = C_{2}(TS) = e(S) \quad euler \\ charact, \\ = b_{0} - b_{1} + b_{2} - b_{3} + b_{9}, \\ = 2 - 2b_{1} + b_{2}.$$
Enriques - Kodeurn classification:

$$k = -\infty, \quad i.e. \quad P_{n} = 0, \quad \forall n.$$

$$(\implies) \quad f_{12} = 0$$

$$l = 0: \quad S \quad is rectanged (i.e. \quad S \quad \dots \quad S \quad p^{2}) \\ birctional \\ q \ge 1. \quad Alb: \quad S \longrightarrow Alb_{1}(S) \qquad map \\ complex torus of dimension q \\ map \\ S \quad is a ruled surface.$$

$$M \quad complex \quad unplex \quad manifold, \\ H^{0}(M, L^{1}): \quad Space of glubal hole morphic i-forms.$$

$$H_{1}(M, Z) \longrightarrow H^{0}(M, -n^{1})^{2} \\ \gamma \quad \dots \quad \int_{\gamma} \cdot : \omega \quad \lim \quad \int_{\gamma} \omega$$
Assume M Kählur, $h^{*i} = h^{1/2}$

$$free obchan$$

the H₁(M, Z) is mapped to a subgroup of make

$$h_1 = h^{1/9} + h^{0/1}$$
,
 $H^0(M, -\Omega')^{\vee}$ / $H_1(M, Z) = :$ Abb (M) is a complex
three.
Allp: M ______, Abb (M)
 $Q = \int_{X^+} \int$

(i.e.
$$\exists S \longrightarrow B$$
 surjective, here inequality
sure map
sure and but finitely many fibers has genned
ore.
 $K=0 \Leftrightarrow (P_n)$ bounded.
Hirzebruch - Ricmann - Roch for surface =)
Noether formula:
 $12 \ V(0s) = C_2 + C_1^2 \qquad \implies$
 $Noether formula:$
 $12 \ V(0s) = C_2 + C_1^2 \qquad \implies$
 $N(0s) = h^0(0s) - h^1(0s) + h^2(0s)$
 $= 1 - h^{0,1} + h^{0,2}$.
Suppox S is a compart Kichler Soufer,
 $knn h^{0,1} = h^{1,0} = q$. $h^{0,2} = h^{2,0} = R$.
 $C_2 = e(S) = 2 - 2b_1 + b_2 = 2 - 4q + 2R + h^{1,1}$
When $K=0$, we have $C_1^2 = 0$. prove later
 $Use \bigotimes : 12(1 - q + R) = 2 - 4q + 2R + h^{1,1}$
 $in - \delta q + [0P_1 - h^{1,1} = 0.$ $in R$
 $R = h^0(K_S) = \int 1$ when $K_S \cong 0S$

