Transformer（Sequence Transduction Model Based Entirely On Attention）

谢海华 助理研究员
北京雁栖湖应用数学研究院
大数据及人工智能
2022.04

The Transformer

The Transformer

The Transformer was proposed in
the paper "Attention is All You Need". In this post, we will attempt to oversimplify things a bit and introduce the concepts one by one to hopefully make it easier to understand to people without indepth knowledge of the subject matter.

Attention Is All You Need

A High-Level Look

Let's begin by looking at the model as a single black box. In a machine translation application, it would take a sentence in one language, and output its translation in another.

A High-Level Look

Popping open that Optimus Prime goodness, we see an encoding component, a decoding component, and connections between them.

A High-Level Look

The encoding component is a stack of encoders (the paper stacks six of them on top of each other - there's nothing magical about the number six, one can definitely experiment with other arrangements). The decoding component is a stack of decoders of the same number.

A High-Level Look

The encoders are all identical in structure (yet they do not share weights). Each one is broken down into two sub-layers.

The encoder's inputs first flow through a self-attention layer - a layer that helps the encoder look at other words in the input sentence as it encodes a specific word.
The outputs of the self-attention layer are fed to a feed-forward neural network. The exact same feed-forward network is independently applied to each position.

A High-Level Look

The decoder has both those layers, but between them is an attention layer that helps the decoder focus on relevant parts of the input sentence (similar what attention does in seq2seq models).

Bringing The Tensors Into The Picture

As is the case in NLP applications in general, we begin by turning each input word into a vector using an embedding algorithm.

The embedding only happens in the bottom-most encoder. The abstraction that is common to all the encoders is that they receive a list of vectors each of the size 512 - In the bottom encoder that would be the word embeddings, but in other encoders, it would be the output of the encoder that's directly below. The size of this list is hyperparameter we can set - basically it would be the length of the longest sentence in our training dataset.

Bringing The Tensors Into The Picture

After embedding the words in our input sequence, each of them flows through each of the two layers of the encoder.

There are dependencies between these paths in the self-attention layer. The feed-forward layer does not have those dependencies, however, and thus the various paths can be executed in parallel while flowing through the feed-forward layer.

Now We're Encoding!

Switch up the example to a shorter sentence and look at what happens in each sub-layer of the encoder.

An encoder receives a list of vectors as input. It processes this list by passing these vectors into a 'self-attention' layer, then into a feed-forward neural network, then sends out the output upwards to the next encoder.

The word at each position passes through a self-attention process. Then, they each pass through a feed-forward neural network -- the exact same network with each vector flowing through it separately.

Self-Attention at a High Level

"self-attention"

Say the following sentence is an input sentence we want to translate:
"The animal didn't cross the street because it was too tired"
What does "it" in this sentence refer to? Is it referring to the street or to the animal? It's a simple question to a human, but not as simple to an algorithm.

When the model is processing the word "it", self-attention allows it to associate "it" with "animal".

Self-Attention at a High Level

As the model processes each word (each position in the input sequence), self attention allows it to look at other positions in the input sequence for clues that can help lead to a better encoding for this word.

Self-attention is the method the
Transformer uses to bake the
"understanding" of other relevant words
into the one we're currently processing.

As we are encoding the word "it" in encoder \#5 (the top encoder in the stack), part of the attention mechanism was focusing on "The Animal", and baked a part of its representation into the encoding of "it".

Self-Attention in Detail

How to calculate self-attention using vectors?
The first step in calculating self-attention is to create three vectors from each of the encoder's input vectors (in this case, the embedding of each word). So for each word, we create a Query vector, a Key vector, and a Value vector. These vectors are created by multiplying the embedding by three matrices that we trained during the training process.

Notice that these new vectors are smaller in dimension than the embedding vector. Their dimensionality is 64 , while the embedding and encoder input/output vectors have dimensionality of 512 . They don't HAVE to be smaller, this is an architecture choice to make the computation of multiheaded attention (mostly) constant.

Self-Attention in Detail

The second step in calculating self-attention is to calculate a score. Say we're calculating the self-attention for the first word in this example, "Thinking". We need to score each word of the input sentence against this word. The score determines how much focus to place on other parts of the input sentence as we encode a word at a certain position.
The score is calculated by taking the dot product of the query vector with the key vector of the respective word we're scoring. So if we're processing the self-attention for the word in position \#1, the first score would be the dot product of q_{1} and k_{1}. The second score would be the dot product of q_{1} and k_{2}.

Self-Attention in Detail

The third and forth steps are to divide the scores by 8 (the square root of the dimension of the key vectors used in the paper -64 . This leads to having more stable gradients. There could be other possible values here, but this is the default), then pass the result through a softmax operation. Softmax normalizes the scores so they're all positive and add up to 1 .

This softmax score determines how much each word will be expressed at this position. Clearly the word at this position will have the highest softmax score, but sometimes it's useful to attend to another word that is relevant to the current word.

Machines

q_{2}

v_{1}
$\mathrm{q}_{1} \cdot \mathrm{k}_{1}=112$
$q_{1} \cdot k_{2}=96$
14
0.88

12
0.12

Self-Attention in Detail

The fifth step is to multiply each value vector by the softmax score (in preparation to sum them up). The intuition here is to keep intact the values of the word(s) we want to focus on, and drown-out irrelevant words (by multiplying them by tiny numbers like 0.001, for example).

The sixth step is to sum up the weighted value vectors. This produces the output of the self-attention layer at this position (for the first word).
That concludes the self-attention calculation. The resulting vector is one we can send along to the feedforward neural network. In the actual implementation, however, this calculation is done in matrix form for faster processing.

Matrix Calculation of Self-Attention

The first step is to calculate the Query, Key, and Value matrices. We do that by packing our embeddings into a matrix \times, and multiplying it by the weight matrices we've trained $\left(W^{Q}, W^{K}, W^{\vee}\right)$.

Every row in the X matrix corresponds to a word in the input sentence. We again see the difference in size of the embedding vector (512, or 4 boxes in the figure), and the $q / k / v$ vectors (64 , or 3 boxes in the figure).

\times

\times

\times

Matrix Calculation of Self-Attention

Finally, since we're dealing with matrices, we can condense steps two through six in one formula to calculate the outputs of the self-attention layer.

The self-attention calculation in matrix form

The Beast With Many Heads

The paper further refined the self-attention layer by adding a mechanism called "multi-headed" attention. This improves the performance of the attention layer in two ways:

1. It expands the model's ability to focus on different positions. Yes, in the example above, z_{1} contains a little bit of every other encoding, but it could be dominated by the actual word itself. It would be useful if we're translating a sentence like "The animal didn't cross the street because it was too tired", we would want to know which word "it" refers to.
2.It gives the attention layer multiple "representation subspaces". As we'll see next, with multi-headed attention we have not only one, but multiple sets of Query/Key/Value weight matrices (the Transformer uses eight attention heads, so we end up with eight sets for each encoder/decoder). Each of these sets is randomly initialized. Then, after training, each set is used to project the input embeddings (or vectors from lower encoders/decoders) into a different representation subspace.

The Beast With Many Heads

If we do the same self-attention calculation we outlined above, just eight different times with different weight matrices, we end up with eight different Z matrices:

This leaves us with a bit of a challenge. The feed-forward layer is not expecting eight matrices - it's expecting a single matrix (a vector for each word). So we need a way to condense these eight down into a single matrix.

The Beast With Many Heads

How do we do that? We concat the matrices then multiple them by an additional weights matrix W°.

1) Concatenate all the attention heads

	Z									Z_{4}		Z_{5}		Z_{6}		Z_{7}	

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

$=$

2) Multiply with a weight matrix W° that was trained jointly with the model

X

The Beast With Many Heads

That's pretty much all there is to multi-headed self-attention. Put them all in one visual so we can look at them in one place.

1) This is our input sentence* 2) We embed each word*

Machines

* In all encoders other than \#0, we don't need embedding. We start directly with the output of the encoder right below this one

3) Split into 8 heads. We multiply X or R with weight matrices
4) Calculate attention using the resulting Q/K/V matrices
5) Concatenate the resulting Z matrices, then multiply with weight matrix W° to produce the output of the layer

The Beast With Many Heads

Now that we have touched upon attention heads, let's revisit our example from before to see where the different attention heads are focusing as we encode the word "it" in our example sentence.

As we encode the word "it", one attention head is focusing most on "the animal", while another is focusing on "tired" -- in a sense, the model's representation of the word "it" bakes in some of the representation of both "animal" and "tired".

Representing The Order of The Sequence Using Positional Encoding

The order of the words in the input sequence?
To address this, the transformer adds a vector to each input embedding. These vectors follow a specific pattern that the model learns, which helps it determine the position of each word, or the distance between different words in the sequence. The intuition here is that adding these values to the embeddings provides meaningful distances between the embedding vectors once they're projected into $Q / K / V$ vectors and during dot-product attention.

EMBEDDING WITH TIME SIGNAL

POSITIONAL POSITIONAL
ENCODING

EMBEDDINGS

INPUT

To give the model a sense of the order of the words, we add positional encoding vectors -- the values of which follow a specific pattern.

Representing The Order of The Sequence Using Positional Encoding

If we assumed the embedding has a dimensionality of 4, the actual positional encodings would look like this:

A real example of positional encoding with a toy embedding size of 4

Representing The Order of The Sequence Using Positional Encoding

What might this pattern look like? In the following figure, each row corresponds the a positional encoding of a vector. So the first row would be the vector we'd add to the embedding of the first word in an input sequence. Each row contains 512 values - each with a value between 1 and -1 . We've color-coded them so the pattern is visible.

A real example of positional encoding for 20 words (rows) with an embedding size of 512 (columns). You can see that it appears split in half down the center. That's because the values of the left half are generated by one function (which uses sine), and the right half is generated by another function (which uses cosine). They're then concatenated to form each of the positional encoding vectors.

Representing The Order of The Sequence Using Positional Encoding

The formula for positional encoding is described in the paper (section 3.5). You can see the code for generating positional encodings in get_timing_signal_1d(). This is not the only possible method for positional encoding. It, however, gives the advantage of being able to scale to unseen lengths of sequences (e.g. if our trained model is asked to translate a sentence longer than any of those in our training set).

The positional encoding shown above is from the Tranformer2Transformer implementation of the Transformer. The method shown in the paper is slightly different in that it doesn't directly concatenate, but interweaves the two signals. The following figure shows what that looks like.

The Residuals

One detail in the architecture of the encoder that we need to mention before moving on, is that each sub-layer (selfattention, ffnn) in each encoder has a residual connection around it, and is followed by a layer-normalization step.

The Residuals

If we're to visualize the vectors and the layer-norm operation associated with self attention, it would look like this:

The Residuals

This goes for the sublayers of the decoder as well. If we're to think of a Transformer of 2 stacked encoders and decoders, it would look something like this:

The Decoder Side

Now that we've covered most of the concepts on the encoder side, we basically know how the components of decoders work as well. But let's take a look at how they work together.

The encoder start by processing the input sequence. The output of the top encoder is then transformed into a set of attention vectors K and V. These are to be used by each decoder in its "encoder-decoder attention" layer which helps the decoder focus on appropriate places in the input sequence:

Decoding time step:(1) 23456
OUTPUT

After finishing the encoding phase, we begin the decoding phase. Each step in the decoding phase outputs an element from the output sequence (the English translation sentence in this case).

The Decoder Side

The following steps repeat the process until a special symbol is reached indicating the transformer decoder has completed its output. The output of each step is fed to the bottom decoder in the next time step, and the decoders bubble up their decoding results just like the encoders did. And just like we did with the encoder inputs, we embed and add positional encoding to those decoder inputs to indicate the position of each word.

The Decoder Side

The self attention layers in the decoder operate in a slightly different way than the one in the encoder:

In the decoder, the self-attention layer is only allowed to attend to earlier positions in the output sequence. This is done by masking future positions (setting them to -inf) before the softmax step in the self-attention calculation.

The Final Linear and Softmax Layer

The decoder stack outputs a vector of floats. How do we turn that into a word? That's the job of the final Linear layer which is followed by a Softmax Layer. The Linear layer is a simple fully connected neural network that projects the vector produced by the stack of decoders, into a much, much larger vector called a logits vector. Let's assume that our model knows 10,000 unique English words (our model's "output vocabulary") that it's learned from its training dataset. This would make the logits vector 10,000 cells wide - each cell corresponding to the score of a unique word. That is how we interpret the output of the model followed by the Linear layer. The softmax layer then turns those scores into probabilities (all positive, all add up to 1.0). The cell with the highest probability is chosen, and the word associated with it is produced as the output for this time step.

Which word in our vocabulary
is associated with this index?
am

Get the index of the cell with the highest value
(argmax)

This figure starts from the bottom with the vector produced as the output of the decoder stack. It is then turned into an output word.

Recap Of Training

Now that we've covered the entire forward-pass process through a trained Transformer, it would be useful to glance at the intuition of training the model.
During training, an untrained model would go through the exact same forward pass. But since we are training it on a labeled training dataset, we can compare its output with the actual correct output.
To visualize this, let's assume our output vocabulary only contains six words("a", "am", "i", "thanks", "student", and "<eos>" (short for 'end of sentence')).

Output Vocabulary

WORD	a	am	1	thanks	student	<eos>
INDEX	0	1	2	3	4	5

The output vocabulary of our model is created in the preprocessing phase before we even begin training.

Recap Of Training

Once we define our output vocabulary, we can use a vector of the same width to indicate each word in our vocabulary. This also known as one-hot encoding. So for example, we can indicate the word "am" using the following vector:
Output Vocabulary

WORD	a	am	I	thanks	student	<eos>
INDEX	0	1	2	3	4	5

One-hot encoding of the word "am"

Example: one-hot encoding of our output vocabulary.

The Loss Function

Say we are training our model.
Say it's our first step in the training phase, and we're training it on a simple example - translating "merci" into "thanks".

What this means, is that we want the output to be a probability distribution indicating the word "thanks". But since this model is not yet trained, that's unlikely to happen just yet.

Untrained Model Output

Correct and desired output

Since the model's parameters (weights) are all initialized randomly, the (untrained) model produces a probability distribution with arbitrary values for each cell/word. We can compare it with the actual output, then tweak all the model's weights using backpropagation to make the output closer to the desired output.

The Loss Function

How do you compare two probability distributions? We simply subtract one from the other. For more details, look at cross-entropy and Kullback-Leibler divergence.

But note that this is an oversimplified example. More realistically, we'll use a sentence longer than one word. For example - input: "je suis étudiant" and expected output: "i am a student". What this really means, is that we want our model to successively output probability distributions where:

- Each probability distribution is represented by a vector of width vocab_size (6 in our toy example, but more realistically a number like 30,000 or 50,000)
- The first probability distribution has the highest probability at the cell associated with the word "i"
- The second probability distribution has the highest probability at the cell associated with the word "am"
- And so on, until the fifth output distribution indicates '<end of sentence>' symbol, which also has a cell associated with it from the 10,000 element vocabulary.

Target Model Outputs

The targeted probability distributions we'll train our model against in the training example for one sample sentence.

The Loss Function

After training the model for enough time on a large enough dataset, we would hope the produced probability distributions would look like this:

Hopefully upon training, the model would output the right translation we expect. Of course it's no real indication if this phrase was part of the training dataset (see: cross validation). Notice that every position gets a little bit of probability even if it's unlikely to be the output of that time step -- that's a very useful property of softmax which helps the training process.

Trained Model Outputs

The Loss Function

Greedy Decoding: the model selects the word with the highest probability from that probability distribution and throwing away the rest.

Beam Search: selects top two words (say, 'l' and 'a' for example), then in the next step, run the model twice: once assuming the first output position was the word ' I ', and another time assuming the first output position was the word 'a', and whichever version produced less error considering both positions \#1 and \#2 is kept. We repeat this for positions \#2 and \#3...etc. This method is called "beam search", where in our example, beam_size was two (meaning that at all times, two partial hypotheses (unfinished translations) are kept in memory), and top_beams is also two (meaning we'll return two translations). These are both hyperparameters that you can experiment with.

问题及讨论

Q\＆A

