
Transformer (Sequence Transduct ion

Model Based Ent i re ly On At tent ion)

Transformer (Sequence Transduct ion

Model Based Ent i re ly On At tent ion)

谢 海 华 助 理 研 究 员

北 京 雁 栖 湖 应 用 数 学 研 究 院

大 数 据 及 人 工 智 能

2 0 2 2 . 0 4

The Transformer

BERT (Bidirectional Encoder
Representations from Transformers)

Google 2018

Transformer (“Attention is all you need”)
Google 2017

Attention (“Neural Machine Translation
by Jointly Learning to Align and

Translate”), 2015

The Transformer
http://jalammar.github.io/illustrated-transformer/

The Transformer was proposed in

the paper “Attention is All You Need”.

In this post, we will attempt to

oversimplify things a bit and

introduce the concepts one by one

to hopefully make it easier to

understand to people without in-

depth knowledge of the subject

matter.

A High-Level Look

Let’s begin by looking at the model as a single black box. In a machine translation application,

it would take a sentence in one language, and output its translation in another.

A High-Level Look
Popping open that Optimus Prime goodness, we see an encoding component, a decoding

component, and connections between them.

A High-Level Look

The encoding component is a

stack of encoders (the paper

stacks six of them on top of each

other – there’s nothing magical

about the number six, one can

definitely experiment with other

arrangements). The decoding

component is a stack of decoders

of the same number.

A High-Level Look
The encoders are all identical in structure (yet they do not share weights). Each one is broken
down into two sub-layers.

The encoder’s inputs first flow through a self-attention layer – a layer that helps the encoder
look at other words in the input sentence as it encodes a specific word.
The outputs of the self-attention layer are fed to a feed-forward neural network. The exact
same feed-forward network is independently applied to each position.

A High-Level Look

The decoder has both those layers, but between them is an attention layer that helps the
decoder focus on relevant parts of the input sentence (similar what attention does in seq2seq
models).

Bringing The Tensors Into The Picture

As is the case in NLP applications in general, we begin by turning each input word into a

vector using an embedding algorithm.

Each word is embedded into a vector of size 512.
We'll represent those vectors with these simple boxes.

The embedding only happens in the bottom-most encoder. The abstraction that is common to all the

encoders is that they receive a list of vectors each of the size 512 – In the bottom encoder that would be

the word embeddings, but in other encoders, it would be the output of the encoder that’s directly below.

The size of this list is hyperparameter we can set – basically it would be the length of the longest

sentence in our training dataset.

Bringing The Tensors Into The Picture

After embedding the words in our input

sequence, each of them flows through

each of the two layers of the encoder.

There are dependencies between these

paths in the self-attention layer. The

feed-forward layer does not have those

dependencies, however, and thus the

various paths can be executed in parallel

while flowing through the feed-forward

layer.

Now We’re Encoding!

Switch up the example to a shorter

sentence and look at what happens in

each sub-layer of the encoder.

An encoder receives a list of vectors as

input. It processes this list by passing

these vectors into a ‘self-attention’ layer,

then into a feed-forward neural network,

then sends out the output upwards to the

next encoder.

The word at each position passes through a self-attention process. Then,
they each pass through a feed-forward neural network -- the exact same

network with each vector flowing through it separately.

Sel f -At tent ion a t a H igh Leve l

“self-attention”
Say the following sentence is an input sentence we want to translate:

“The animal didn't cross the street because it was too tired”

What does “it” in this sentence refer to? Is it referring to the street or to the animal? It’s a simple

question to a human, but not as simple to an algorithm.

When the model is processing the word “it”, self-attention allows it to associate “it” with “animal”.

Sel f -At tent ion a t a H igh Leve l

As the model processes each word (each
position in the input sequence), self
attention allows it to look at other
positions in the input sequence for clues
that can help lead to a better encoding for
this word.

Self-attention is the method the
Transformer uses to bake the
“understanding” of other relevant words
into the one we’re currently processing.

As we are encoding the word "it" in encoder #5 (the top encoder in the
stack), part of the attention mechanism was focusing on "The Animal",
and baked a part of its representation into the encoding of "it".

Sel f -At tent ion in Deta i l

How to calculate self-attention using vectors?

The first step in calculating self-attention is to
create three vectors from each of the encoder’s
input vectors (in this case, the embedding of
each word). So for each word, we create a
Query vector, a Key vector, and a Value vector.
These vectors are created by multiplying the
embedding by three matrices that we trained
during the training process.

Notice that these new vectors are smaller in
dimension than the embedding vector. Their
dimensionality is 64, while the embedding and
encoder input/output vectors have
dimensionality of 512. They don’t HAVE to be
smaller, this is an architecture choice to make
the computation of multiheaded attention
(mostly) constant. Multiplying x1 by the WQ weight matrix produces q1, the "query" vector

associated with that word. We end up creating a "query", a "key", and a
"value" projection of each word in the input sentence.

Sel f -At tent ion in Deta i l

The second step in calculating self-attention
is to calculate a score. Say we’re calculating
the self-attention for the first word in this
example, “Thinking”. We need to score each
word of the input sentence against this word.
The score determines how much focus to
place on other parts of the input sentence as
we encode a word at a certain position.
The score is calculated by taking the dot
product of the query vector with the key
vector of the respective word we’re scoring.
So if we’re processing the self-attention for
the word in position #1, the first score would
be the dot product of q1 and k1. The second
score would be the dot product of q1 and k2.

Sel f -At tent ion in Deta i l

The third and forth steps are to divide the scores
by 8 (the square root of the dimension of the key
vectors used in the paper – 64. This leads to having
more stable gradients. There could be other possible
values here, but this is the default), then pass the
result through a softmax operation. Softmax
normalizes the scores so they’re all positive and add
up to 1.

This softmax score determines how much each word
will be expressed at this position. Clearly the word at
this position will have the highest softmax score, but
sometimes it’s useful to attend to another word that is
relevant to the current word.

Sel f -At tent ion in Deta i l

The fifth step is to multiply each value vector by the
softmax score (in preparation to sum them up). The
intuition here is to keep intact the values of the
word(s) we want to focus on, and drown-out
irrelevant words (by multiplying them by tiny numbers
like 0.001, for example).

The sixth step is to sum up the weighted value
vectors. This produces the output of the self-attention
layer at this position (for the first word).
That concludes the self-attention calculation. The
resulting vector is one we can send along to the feed-
forward neural network. In the actual implementation,
however, this calculation is done in matrix form for
faster processing.

Matr ix Ca lcu la t ion of Se l f -At tent ion

The first step is to calculate the Query, Key, and
Value matrices. We do that by packing our
embeddings into a matrix X, and multiplying it by the
weight matrices we’ve trained (WQ, WK, WV).

Every row in the X matrix corresponds to a word in
the input sentence. We again see the difference in
size of the embedding vector (512, or 4 boxes in the
figure), and the q/k/v vectors (64, or 3 boxes in the
figure).

Matr ix Ca lcu la t ion of Se l f -At tent ion

Finally, since we’re dealing with matrices, we can condense steps two through six in one

formula to calculate the outputs of the self-attention layer.

The self-attention calculation in matrix form

The Beast Wi th Many Heads

The paper further refined the self-attention layer by
adding a mechanism called “multi-headed” attention.
This improves the performance of the attention layer
in two ways:
1.It expands the model’s ability to focus on different
positions. Yes, in the example above, z1 contains a
little bit of every other encoding, but it could be
dominated by the actual word itself. It would be useful
if we’re translating a sentence like “The animal didn’t
cross the street because it was too tired”, we would
want to know which word “it” refers to.
2.It gives the attention layer multiple “representation
subspaces”. As we’ll see next, with multi-headed
attention we have not only one, but multiple sets of
Query/Key/Value weight matrices (the Transformer
uses eight attention heads, so we end up with eight
sets for each encoder/decoder). Each of these sets is
randomly initialized. Then, after training, each set is
used to project the input embeddings (or vectors from
lower encoders/decoders) into a different
representation subspace.

With multi-headed attention, we maintain separate Q/K/V weight matrices for
each head resulting in different Q/K/V matrices. As we did before, we multiply

X by the WQ/WK/WV matrices to produce Q/K/V matrices.

The Beast Wi th Many Heads

If we do the same self-attention calculation we outlined above, just eight different times with different weight
matrices, we end up with eight different Z matrices:

This leaves us with a bit of a challenge. The feed-forward layer is not expecting eight matrices – it’s expecting a

single matrix (a vector for each word). So we need a way to condense these eight down into a single matrix.

The Beast Wi th Many Heads

How do we do that? We concat the matrices then multiple them by an additional weights matrix WO.

The Beast Wi th Many Heads

That’s pretty much all there is to multi-headed self-attention. Put them all in one visual so we can look

at them in one place.

The Beast Wi th Many Heads

Now that we have touched upon attention

heads, let’s revisit our example from before

to see where the different attention heads

are focusing as we encode the word “it” in

our example sentence.

As we encode the word "it", one attention

head is focusing most on "the animal",

while another is focusing on "tired" -- in a

sense, the model's representation of the

word "it" bakes in some of the

representation of both "animal" and "tired".

Representing The Order of The Sequence Using Positional Encoding

The order of the words in the input
sequence?
To address this, the transformer adds a
vector to each input embedding. These
vectors follow a specific pattern that the
model learns, which helps it determine the
position of each word, or the distance
between different words in the sequence.
The intuition here is that adding these
values to the embeddings provides
meaningful distances between the
embedding vectors once they’re projected
into Q/K/V vectors and during dot-product
attention. To give the model a sense of the order of the words, we add positional

encoding vectors ‐‐ the values of which follow a specific pattern.

Representing The Order of The Sequence Using Positional Encoding

If we assumed the embedding has a dimensionality of 4, the actual positional encodings

would look like this:

A real example of positional encoding with a toy embedding size of 4

Representing The Order of The Sequence Using Positional Encoding

What might this pattern look like?
In the following figure, each row
corresponds the a positional
encoding of a vector. So the first row
would be the vector we’d add to the
embedding of the first word in an
input sequence. Each row contains
512 values – each with a value
between 1 and -1. We’ve color-coded
them so the pattern is visible.

A real example of positional encoding
for 20 words (rows) with an
embedding size of 512 (columns).
You can see that it appears split in
half down the center. That's because
the values of the left half are
generated by one function (which
uses sine), and the right half is
generated by another function (which
uses cosine). They're then
concatenated to form each of the
positional encoding vectors.

Representing The Order of The Sequence Using Positional Encoding

The formula for positional encoding is
described in the paper (section 3.5). You can
see the code for generating positional
encodings in get_timing_signal_1d(). This is
not the only possible method for positional
encoding. It, however, gives the advantage of
being able to scale to unseen lengths of
sequences (e.g. if our trained model is asked
to translate a sentence longer than any of
those in our training set).

The positional encoding shown above is from
the Tranformer2Transformer implementation
of the Transformer. The method shown in the
paper is slightly different in that it doesn’t
directly concatenate, but interweaves the two
signals. The following figure shows what that
looks like.

The Residuals

One detail in the architecture of

the encoder that we need to

mention before moving on, is

that each sub-layer (self-

attention, ffnn) in each encoder

has a residual connection

around it, and is followed by

a layer-normalization step.

The Residuals

If we’re to visualize the vectors

and the layer-norm operation

associated with self attention, it

would look like this:

The Residuals

This goes for the sub-

layers of the decoder

as well. If we’re to think

of a Transformer of 2

stacked encoders and

decoders, it would look

something like this:

T h e D e c o d e r S i d e

Now that we’ve covered most of the

concepts on the encoder side, we

basically know how the components of

decoders work as well. But let’s take a

look at how they work together.

The encoder start by processing the input

sequence. The output of the top encoder

is then transformed into a set of attention

vectors K and V. These are to be used by

each decoder in its “encoder-decoder

attention” layer which helps the decoder

focus on appropriate places in the input

sequence:
After finishing the encoding phase, we begin the decoding phase. Each step in
the decoding phase outputs an element from the output sequence (the English

translation sentence in this case).

T h e D e c o d e r S i d e

The following steps repeat the process

until a special symbol is reached

indicating the transformer decoder has

completed its output. The output of each

step is fed to the bottom decoder in the

next time step, and the decoders bubble

up their decoding results just like the

encoders did. And just like we did with

the encoder inputs, we embed and add

positional encoding to those decoder

inputs to indicate the position of each

word.

T h e D e c o d e r S i d e

The self attention layers in the decoder operate in a slightly different way than the one in the

encoder:

In the decoder, the self-attention layer is only allowed to attend to earlier positions in the

output sequence. This is done by masking future positions (setting them to -inf) before the

softmax step in the self-attention calculation.

The “Encoder-Decoder Attention” layer works just like multiheaded self-attention, except it

creates its Queries matrix from the layer below it, and takes the Keys and Values matrix from

the output of the encoder stack.

The F ina l L inear and Sof tmax Layer

The decoder stack outputs a vector of
floats. How do we turn that into a word?
That’s the job of the final Linear layer
which is followed by a Softmax Layer.
The Linear layer is a simple fully
connected neural network that projects
the vector produced by the stack of
decoders, into a much, much larger
vector called a logits vector.
Let’s assume that our model knows
10,000 unique English words (our model’s
“output vocabulary”) that it’s learned from
its training dataset. This would make the
logits vector 10,000 cells wide – each cell
corresponding to the score of a unique
word. That is how we interpret the output
of the model followed by the Linear layer.
The softmax layer then turns those scores
into probabilities (all positive, all add up to
1.0). The cell with the highest probability
is chosen, and the word associated with it
is produced as the output for this time
step. This figure starts from the bottom with the vector produced as the output of

the decoder stack. It is then turned into an output word.

Recap Of Tra in ing

Now that we’ve covered the entire forward-pass process through a trained Transformer, it would be useful to
glance at the intuition of training the model.
During training, an untrained model would go through the exact same forward pass. But since we are training it on
a labeled training dataset, we can compare its output with the actual correct output.
To visualize this, let’s assume our output vocabulary only contains six words(“a”, “am”, “i”, “thanks”, “student”, and
“<eos>” (short for ‘end of sentence’)).

The output vocabulary of our model is created in the preprocessing phase before we even begin training.

Recap Of Tra in ing

Once we define our output vocabulary, we can use a vector of the same width to indicate each word in our vocabulary.

This also known as one-hot encoding. So for example, we can indicate the word “am” using the following vector:

Example: one-hot encoding of our output vocabulary.

The Loss Funct ion

Say we are training our model.

Say it’s our first step in the

training phase, and we’re

training it on a simple example

– translating “merci” into

“thanks”.

What this means, is that we

want the output to be a

probability distribution

indicating the word “thanks”.

But since this model is not yet

trained, that’s unlikely to

happen just yet.
Since the model's parameters (weights) are all initialized randomly, the (untrained) model produces a

probability distribution with arbitrary values for each cell/word. We can compare it with the actual output,

then tweak all the model's weights using backpropagation to make the output closer to the desired output.

The Loss Funct ion

How do you compare two probability distributions? We
simply subtract one from the other. For more details,
look at cross-entropy and Kullback–Leibler divergence.

But note that this is an oversimplified example. More
realistically, we’ll use a sentence longer than one word.
For example – input: “je suis étudiant” and expected
output: “i am a student”. What this really means, is that
we want our model to successively output probability
distributions where:

• Each probability distribution is represented by a
vector of width vocab_size (6 in our toy example,
but more realistically a number like 30,000 or
50,000)

• The first probability distribution has the highest
probability at the cell associated with the word “i”

• The second probability distribution has the highest
probability at the cell associated with the word “am”

• And so on, until the fifth output distribution indicates
‘<end of sentence>’ symbol, which also has a cell
associated with it from the 10,000 element
vocabulary.

The targeted probability distributions we'll train our model against in
the training example for one sample sentence.

The Loss Funct ion

After training the model for enough time on a

large enough dataset, we would hope the

produced probability distributions would look like

this:

Hopefully upon training, the model would output

the right translation we expect. Of course it's no

real indication if this phrase was part of the

training dataset (see: cross validation). Notice

that every position gets a little bit of probability

even if it's unlikely to be the output of that time

step -- that's a very useful property of softmax

which helps the training process.

The Loss Funct ion

Greedy Decoding: the model selects the word with the highest probability from that

probability distribution and throwing away the rest.

Beam Search: selects top two words (say, ‘I’ and ‘a’ for example), then in the next step, run

the model twice: once assuming the first output position was the word ‘I’, and another time

assuming the first output position was the word ‘a’, and whichever version produced less

error considering both positions #1 and #2 is kept. We repeat this for positions #2 and

#3…etc. This method is called “beam search”, where in our example, beam_size was two

(meaning that at all times, two partial hypotheses (unfinished translations) are kept in

memory), and top_beams is also two (meaning we’ll return two translations). These are both

hyperparameters that you can experiment with.

Q&A

问题及讨论问题及讨论

