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The Transformer
http://jalammar.github.io/illustrated-transformer/

The Transformer was proposed in 

the paper “Attention is All You Need”. 

In this post, we will attempt to 

oversimplify things a bit and 

introduce the concepts one by one 

to hopefully make it easier to 

understand to people without in-

depth knowledge of the subject 

matter.



A High-Level Look 

Let’s begin by looking at the model as a single black box. In a machine translation application, 

it would take a sentence in one language, and output its translation in another.



A High-Level Look 
Popping open that Optimus Prime goodness, we see an encoding component, a decoding 

component, and connections between them.



A High-Level Look

The encoding component is a 

stack of encoders (the paper 

stacks six of them on top of each 

other – there’s nothing magical 

about the number six, one can 

definitely experiment with other 

arrangements). The decoding 

component is a stack of decoders 

of the same number.



A High-Level Look
The encoders are all identical in structure (yet they do not share weights). Each one is broken 
down into two sub-layers.

The encoder’s inputs first flow through a self-attention layer – a layer that helps the encoder 
look at other words in the input sentence as it encodes a specific word.
The outputs of the self-attention layer are fed to a feed-forward neural network. The exact 
same feed-forward network is independently applied to each position.



A High-Level Look

The decoder has both those layers, but between them is an attention layer that helps the 
decoder focus on relevant parts of the input sentence (similar what attention does in seq2seq 
models).



Bringing The Tensors Into The Picture

As is the case in NLP applications in general, we begin by turning each input word into a 

vector using an embedding algorithm.

Each word is embedded into a vector of size 512. 
We'll represent those vectors with these simple boxes.

The embedding only happens in the bottom-most encoder. The abstraction that is common to all the 

encoders is that they receive a list of vectors each of the size 512 – In the bottom encoder that would be 

the word embeddings, but in other encoders, it would be the output of the encoder that’s directly below. 

The size of this list is hyperparameter we can set – basically it would be the length of the longest 

sentence in our training dataset.



Bringing The Tensors Into The Picture

After embedding the words in our input 

sequence, each of them flows through 

each of the two layers of the encoder.

There are dependencies between these 

paths in the self-attention layer. The 

feed-forward layer does not have those 

dependencies, however, and thus the 

various paths can be executed in parallel 

while flowing through the feed-forward 

layer.



Now We’re Encoding!

Switch up the example to a shorter 

sentence and look at what happens in 

each sub-layer of the encoder.

An encoder receives a list of vectors as 

input. It processes this list by passing 

these vectors into a ‘self-attention’ layer, 

then into a feed-forward neural network, 

then sends out the output upwards to the 

next encoder.

The word at each position passes through a self-attention process. Then, 
they each pass through a feed-forward neural network -- the exact same 

network with each vector flowing through it separately.



Sel f -At tent ion  a t  a  H igh Leve l

“self-attention” 
Say the following sentence is an input sentence we want to translate:

“The animal didn't cross the street because it was too tired”

What does “it” in this sentence refer to? Is it referring to the street or to the animal? It’s a simple 

question to a human, but not as simple to an algorithm.

When the model is processing the word “it”, self-attention allows it to associate “it” with “animal”.



Sel f -At tent ion  a t  a  H igh Leve l

As the model processes each word (each 
position in the input sequence), self 
attention allows it to look at other 
positions in the input sequence for clues 
that can help lead to a better encoding for 
this word.

Self-attention is the method the 
Transformer uses to bake the 
“understanding” of other relevant words 
into the one we’re currently processing.

As we are encoding the word "it" in encoder #5 (the top encoder in the 
stack), part of the attention mechanism was focusing on "The Animal", 
and baked a part of its representation into the encoding of "it".



Sel f -At tent ion  in  Deta i l

How to calculate self-attention using vectors?

The first step in calculating self-attention is to 
create three vectors from each of the encoder’s 
input vectors (in this case, the embedding of 
each word). So for each word, we create a 
Query vector, a Key vector, and a Value vector. 
These vectors are created by multiplying the 
embedding by three matrices that we trained 
during the training process.

Notice that these new vectors are smaller in 
dimension than the embedding vector. Their 
dimensionality is 64, while the embedding and 
encoder input/output vectors have 
dimensionality of 512. They don’t HAVE to be 
smaller, this is an architecture choice to make 
the computation of multiheaded attention 
(mostly) constant. Multiplying x1 by the WQ weight matrix produces q1, the "query" vector 

associated with that word. We end up creating a "query", a "key", and a 
"value" projection of each word in the input sentence.



Sel f -At tent ion  in  Deta i l

The second step in calculating self-attention 
is to calculate a score. Say we’re calculating 
the self-attention for the first word in this 
example, “Thinking”. We need to score each 
word of the input sentence against this word. 
The score determines how much focus to 
place on other parts of the input sentence as 
we encode a word at a certain position.
The score is calculated by taking the dot 
product of the query vector with the key 
vector of the respective word we’re scoring. 
So if we’re processing the self-attention for 
the word in position #1, the first score would 
be the dot product of q1 and k1. The second 
score would be the dot product of q1 and k2.



Sel f -At tent ion  in  Deta i l

The third and forth steps are to divide the scores 
by 8 (the square root of the dimension of the key 
vectors used in the paper – 64. This leads to having 
more stable gradients. There could be other possible 
values here, but this is the default), then pass the 
result through a softmax operation. Softmax
normalizes the scores so they’re all positive and add 
up to 1.

This softmax score determines how much each word 
will be expressed at this position. Clearly the word at 
this position will have the highest softmax score, but 
sometimes it’s useful to attend to another word that is 
relevant to the current word.



Sel f -At tent ion  in  Deta i l

The fifth step is to multiply each value vector by the 
softmax score (in preparation to sum them up). The 
intuition here is to keep intact the values of the 
word(s) we want to focus on, and drown-out 
irrelevant words (by multiplying them by tiny numbers 
like 0.001, for example).

The sixth step is to sum up the weighted value 
vectors. This produces the output of the self-attention 
layer at this position (for the first word).
That concludes the self-attention calculation. The 
resulting vector is one we can send along to the feed-
forward neural network. In the actual implementation, 
however, this calculation is done in matrix form for 
faster processing.



Matr ix  Ca lcu la t ion  of  Se l f -At tent ion

The first step is to calculate the Query, Key, and 
Value matrices. We do that by packing our 
embeddings into a matrix X, and multiplying it by the 
weight matrices we’ve trained (WQ, WK, WV).

Every row in the X matrix corresponds to a word in 
the input sentence. We again see the difference in 
size of the embedding vector (512, or 4 boxes in the 
figure), and the q/k/v vectors (64, or 3 boxes in the 
figure).



Matr ix  Ca lcu la t ion  of  Se l f -At tent ion

Finally, since we’re dealing with matrices, we can condense steps two through six in one 

formula to calculate the outputs of the self-attention layer.

The self-attention calculation in matrix form



The Beast  Wi th  Many Heads

The paper further refined the self-attention layer by 
adding a mechanism called “multi-headed” attention. 
This improves the performance of the attention layer 
in two ways:
1.It expands the model’s ability to focus on different 
positions. Yes, in the example above, z1 contains a 
little bit of every other encoding, but it could be 
dominated by the actual word itself. It would be useful 
if we’re translating a sentence like “The animal didn’t 
cross the street because it was too tired”, we would 
want to know which word “it” refers to.
2.It gives the attention layer multiple “representation 
subspaces”. As we’ll see next, with multi-headed 
attention we have not only one, but multiple sets of 
Query/Key/Value weight matrices (the Transformer 
uses eight attention heads, so we end up with eight 
sets for each encoder/decoder). Each of these sets is 
randomly initialized. Then, after training, each set is 
used to project the input embeddings (or vectors from 
lower encoders/decoders) into a different 
representation subspace.

With multi-headed attention, we maintain separate Q/K/V weight matrices for 
each head resulting in different Q/K/V matrices. As we did before, we multiply 

X by the WQ/WK/WV matrices to produce Q/K/V matrices.



The Beast  Wi th  Many Heads

If we do the same self-attention calculation we outlined above, just eight different times with different weight 
matrices, we end up with eight different Z matrices:

This leaves us with a bit of a challenge. The feed-forward layer is not expecting eight matrices – it’s expecting a 

single matrix (a vector for each word). So we need a way to condense these eight down into a single matrix.



The Beast  Wi th  Many Heads

How do we do that? We concat the matrices then multiple them by an additional weights matrix WO.



The Beast  Wi th  Many Heads

That’s pretty much all there is to multi-headed self-attention. Put them all in one visual so we can look 

at them in one place.



The Beast  Wi th  Many Heads

Now that we have touched upon attention 

heads, let’s revisit our example from before 

to see where the different attention heads 

are focusing as we encode the word “it” in 

our example sentence.

As we encode the word "it", one attention 

head is focusing most on "the animal", 

while another is focusing on "tired" -- in a 

sense, the model's representation of the 

word "it" bakes in some of the 

representation of both "animal" and "tired".



Representing The Order of The Sequence Using Positional Encoding

The order of the words in the input 
sequence?
To address this, the transformer adds a 
vector to each input embedding. These 
vectors follow a specific pattern that the 
model learns, which helps it determine the 
position of each word, or the distance 
between different words in the sequence. 
The intuition here is that adding these 
values to the embeddings provides 
meaningful distances between the 
embedding vectors once they’re projected 
into Q/K/V vectors and during dot-product 
attention. To give the model a sense of the order of the words, we add positional 

encoding vectors ‐‐ the values of which follow a specific pattern.



Representing The Order of The Sequence Using Positional Encoding

If we assumed the embedding has a dimensionality of 4, the actual positional encodings 

would look like this:

A real example of positional encoding with a toy embedding size of 4



Representing The Order of The Sequence Using Positional Encoding

What might this pattern look like?
In the following figure, each row 
corresponds the a positional 
encoding of a vector. So the first row 
would be the vector we’d add to the 
embedding of the first word in an 
input sequence. Each row contains 
512 values – each with a value 
between 1 and -1. We’ve color-coded 
them so the pattern is visible.

A real example of positional encoding 
for 20 words (rows) with an 
embedding size of 512 (columns). 
You can see that it appears split in 
half down the center. That's because 
the values of the left half are 
generated by one function (which 
uses sine), and the right half is 
generated by another function (which 
uses cosine). They're then 
concatenated to form each of the 
positional encoding vectors.



Representing The Order of The Sequence Using Positional Encoding

The formula for positional encoding is 
described in the paper (section 3.5). You can 
see the code for generating positional 
encodings in get_timing_signal_1d(). This is 
not the only possible method for positional 
encoding. It, however, gives the advantage of 
being able to scale to unseen lengths of 
sequences (e.g. if our trained model is asked 
to translate a sentence longer than any of 
those in our training set).

The positional encoding shown above is from 
the Tranformer2Transformer implementation 
of the Transformer. The method shown in the 
paper is slightly different in that it doesn’t 
directly concatenate, but interweaves the two 
signals. The following figure shows what that 
looks like.



The Residuals

One detail in the architecture of 

the encoder that we need to 

mention before moving on, is 

that each sub-layer (self-

attention, ffnn) in each encoder 

has a residual connection 

around it, and is followed by 

a layer-normalization step.



The Residuals

If we’re to visualize the vectors 

and the layer-norm operation 

associated with self attention, it 

would look like this:



The Residuals

This goes for the sub-

layers of the decoder 

as well. If we’re to think 

of a Transformer of 2 

stacked encoders and 

decoders, it would look 

something like this:



T h e  D e c o d e r  S i d e

Now that we’ve covered most of the 

concepts on the encoder side, we 

basically know how the components of 

decoders work as well. But let’s take a 

look at how they work together.

The encoder start by processing the input 

sequence. The output of the top encoder 

is then transformed into a set of attention 

vectors K and V. These are to be used by 

each decoder in its “encoder-decoder 

attention” layer which helps the decoder 

focus on appropriate places in the input 

sequence:
After finishing the encoding phase, we begin the decoding phase. Each step in 
the decoding phase outputs an element from the output sequence (the English 

translation sentence in this case).



T h e  D e c o d e r  S i d e

The following steps repeat the process 

until a special symbol is reached 

indicating the transformer decoder has 

completed its output. The output of each 

step is fed to the bottom decoder in the 

next time step, and the decoders bubble 

up their decoding results just like the 

encoders did. And just like we did with 

the encoder inputs, we embed and add 

positional encoding to those decoder 

inputs to indicate the position of each 

word.



T h e  D e c o d e r  S i d e

The self attention layers in the decoder operate in a slightly different way than the one in the 

encoder:

In the decoder, the self-attention layer is only allowed to attend to earlier positions in the 

output sequence. This is done by masking future positions (setting them to -inf) before the 

softmax step in the self-attention calculation.

The “Encoder-Decoder Attention” layer works just like multiheaded self-attention, except it 

creates its Queries matrix from the layer below it, and takes the Keys and Values matrix from 

the output of the encoder stack.



The F ina l  L inear  and Sof tmax Layer

The decoder stack outputs a vector of 
floats. How do we turn that into a word? 
That’s the job of the final Linear layer 
which is followed by a Softmax Layer.
The Linear layer is a simple fully 
connected neural network that projects 
the vector produced by the stack of 
decoders, into a much, much larger 
vector called a logits vector.
Let’s assume that our model knows 
10,000 unique English words (our model’s 
“output vocabulary”) that it’s learned from 
its training dataset. This would make the 
logits vector 10,000 cells wide – each cell 
corresponding to the score of a unique 
word. That is how we interpret the output 
of the model followed by the Linear layer.
The softmax layer then turns those scores 
into probabilities (all positive, all add up to 
1.0). The cell with the highest probability 
is chosen, and the word associated with it 
is produced as the output for this time 
step. This figure starts from the bottom with the vector produced as the output of 

the decoder stack. It is then turned into an output word.



Recap Of  Tra in ing

Now that we’ve covered the entire forward-pass process through a trained Transformer, it would be useful to 
glance at the intuition of training the model.
During training, an untrained model would go through the exact same forward pass. But since we are training it on 
a labeled training dataset, we can compare its output with the actual correct output.
To visualize this, let’s assume our output vocabulary only contains six words(“a”, “am”, “i”, “thanks”, “student”, and 
“<eos>” (short for ‘end of sentence’)).

The output vocabulary of our model is created in the preprocessing phase before we even begin training.



Recap Of  Tra in ing

Once we define our output vocabulary, we can use a vector of the same width to indicate each word in our vocabulary. 

This also known as one-hot encoding. So for example, we can indicate the word “am” using the following vector:

Example: one-hot encoding of our output vocabulary.



The Loss Funct ion

Say we are training our model. 

Say it’s our first step in the 

training phase, and we’re 

training it on a simple example 

– translating “merci” into 

“thanks”.

What this means, is that we 

want the output to be a 

probability distribution 

indicating the word “thanks”. 

But since this model is not yet 

trained, that’s unlikely to 

happen just yet.
Since the model's parameters (weights) are all initialized randomly, the (untrained) model produces a 

probability distribution with arbitrary values for each cell/word. We can compare it with the actual output, 

then tweak all the model's weights using backpropagation to make the output closer to the desired output.



The Loss Funct ion

How do you compare two probability distributions? We 
simply subtract one from the other. For more details, 
look at cross-entropy and Kullback–Leibler divergence.

But note that this is an oversimplified example. More 
realistically, we’ll use a sentence longer than one word. 
For example – input: “je suis étudiant” and expected 
output: “i am a student”. What this really means, is that 
we want our model to successively output probability 
distributions where:

• Each probability distribution is represented by a 
vector of width vocab_size (6 in our toy example, 
but more realistically a number like 30,000 or 
50,000)

• The first probability distribution has the highest 
probability at the cell associated with the word “i”

• The second probability distribution has the highest 
probability at the cell associated with the word “am”

• And so on, until the fifth output distribution indicates 
‘<end of sentence>’ symbol, which also has a cell 
associated with it from the 10,000 element 
vocabulary.

The targeted probability distributions we'll train our model against in 
the training example for one sample sentence.



The Loss Funct ion

After training the model for enough time on a 

large enough dataset, we would hope the 

produced probability distributions would look like 

this:

Hopefully upon training, the model would output 

the right translation we expect. Of course it's no 

real indication if this phrase was part of the 

training dataset (see: cross validation). Notice 

that every position gets a little bit of probability 

even if it's unlikely to be the output of that time 

step -- that's a very useful property of softmax

which helps the training process.



The Loss Funct ion

Greedy Decoding: the model selects the word with the highest probability from that 

probability distribution and throwing away the rest.

Beam Search: selects top two words (say, ‘I’ and ‘a’ for example), then in the next step, run 

the model twice: once assuming the first output position was the word ‘I’, and another time 

assuming the first output position was the word ‘a’, and whichever version produced less 

error considering both positions #1 and #2 is kept. We repeat this for positions #2 and 

#3…etc. This method is called “beam search”, where in our example, beam_size was two 

(meaning that at all times, two partial hypotheses (unfinished translations) are kept in 

memory), and top_beams is also two (meaning we’ll return two translations). These are both 

hyperparameters that you can experiment with.



Q&A

问题及讨论问题及讨论


