Selected topics on category theory

Hao Zheng

Spring, 2022

Beijing Institute of Mathematical Sciences and Applications Institute for Applied Mathematics, Tsinghua University

Condensation completion

A unitary fusion n-category \mathcal{C} involves the following structures:

- 1 \mathbb{C} is a \mathbb{C} -linear monoidal *n*-category with duals.
- 2 C is separable.
- 3 C carries a *-structure.

References:

- [1] C. L. Douglas and D. J. Reutter, Fusion 2-categories and a state-sum invariant for 4-manifolds, arXiv:1812.11933.
- [2] D. Gaiotto and T. Johnson-Freyd, Condensations in higher categories, arXiv:1905.09566.
- [3] T. Johnson-Freyd, On the classification of topological orders, arXiv:2003.06663.
- [4] L. Kong and H. Zheng, Categories of quantum liquids I, arXiv:2011.02859.

1. Condensation

Definition

Let $\mathcal C$ be an n-category and $X,Y\in\mathcal C$. For n=0, a condensation $X\to Y$ is an equality X=Y. By induction on $n\ge 1$, a condensation $X\to Y$ is a pair of 1-morphisms $f:X\to Y$ and $g:Y\to X$ together with a condensation $f\circ g\to \operatorname{Id}_Y$. We say that Y is a condensate of X if there exists a condensation $X\to Y$.

Example

For n = 0, Y is a condensate of X if and only if Y = X.

Example

For n=1, a condensation $X \to Y$ is a pair of 1-morphisms $Y \xrightarrow{g} X \xrightarrow{f} Y$ such that $f \circ g = \operatorname{Id}_Y$. Therefore, a condensate is nothing but a retract. Note that the 1-morphism $g \circ f : X \to X$ is idempotent.

Example (Trivial condensation)

 $\operatorname{Id}_X:X\to X.$

Remark

In general, a condensation $X \rightarrow Y$ consists of the following data:

- \blacksquare a pair of 1-morphisms $Y \xrightarrow{g_1} X \xrightarrow{f_1} Y$,
- \blacksquare a pair of 2-morphisms $\operatorname{Id}_Y \xrightarrow{g_2} f_1 \circ g_1 \xrightarrow{f_2} \operatorname{Id}_Y$,
- a pair of 3-morphisms $Id_{Id_Y} \xrightarrow{g_3} f_2 \circ g_2 \xrightarrow{f_3} Id_{Id_Y}, ...,$
- lacksquare a pair of *n*-morphisms $\operatorname{Id}_{\cdots \operatorname{Id}_Y} \xrightarrow{g_n} f_{n-1} \circ g_{n-1} \xrightarrow{f_n} \operatorname{Id}_{\cdots \operatorname{Id}_Y} \operatorname{such that } f_n \circ g_n = \operatorname{Id}_{\cdots \operatorname{Id}_Y} \circ g_n$

Remark

The relation of condensation is transitive. That is, giving a pair of condensations $X \to Y \to Z$ defined by $X \xrightarrow{f} Y \xrightarrow{f'} Z$, $X \xleftarrow{g} Y \xleftarrow{g'} Z$ and $f \circ g \to \operatorname{Id}_Y$, $f' \circ g' \to \operatorname{Id}_Z$, we have a condensation $X \to Z$ defined by $X \xrightarrow{f' \circ f} Z$, $X \xleftarrow{g \circ g'} Z$ and the composition $f' \circ f \circ g \circ g' \to f' \circ \operatorname{Id}_Y \circ g' \to \operatorname{Id}_Z$.

Hao Zheng

The walking *n*-condensation is the *n*-category \spadesuit_n generated by

- \blacksquare a pair of objects X and Y,
- a pair of 1-morphisms $Y \xrightarrow{g_1} X \xrightarrow{f_1} Y$,
- \blacksquare a pair of 2-morphisms $\operatorname{Id}_Y \xrightarrow{g_2} f_1 \circ g_1 \xrightarrow{f_2} \operatorname{Id}_Y$,
- lack a a pair of 3-morphisms $\operatorname{Id}_{\operatorname{Id}_Y} \xrightarrow{g_3} f_2 \circ g_2 \xrightarrow{f_3} \operatorname{Id}_{\operatorname{Id}_Y}, ...,$
- $\blacksquare \text{ a pair of } n\text{-morphisms } \mathsf{Id} \ldots_{\mathsf{Id}_Y} \xrightarrow{g_n} f_{n-1} \circ g_{n-1} \xrightarrow{f_n} \mathsf{Id} \ldots_{\mathsf{Id}_Y} \text{ such that } f_n \circ g_n = \mathsf{Id} \ldots_{\mathsf{Id}_Y}.$

The walking condensation monad \clubsuit_n is the full subcategory on the object X.

By definition, a condensation in an *n*-category \mathbb{C} is a functor $\spadesuit_n \to \mathbb{C}$.

Definition

A condensation monad in an *n*-category \mathcal{C} is a functor $\clubsuit_n \to \mathcal{C}$.

1. Condensation

Example (Trivial condensation monad)

A constant functor $\clubsuit_n \to \mathcal{C}$.

Example

The 1-category \spadesuit_1 consists of two objects X,Y and three nontrivial 1-morphisms $f:X\to Y,g:Y\to X$, $e:X\to X$ such that $e^2=e=g\circ f$ and $f\circ g=\operatorname{Id}_Y$. Thus \clubsuit_1 consists of a single object X and a single nontrivial 1-morphisms $e:X\to X$ such that $e^2=e$. Therefore, a condensation monad $\clubsuit_1\to \mathcal C$ is simply an idempotent 1-morphism of $\mathcal C$.

By induction on $n \geq 1$, we say that an n-category ${\mathcal C}$ is condensation complete or Karoubi complete if ${\sf Hom}_{\mathcal C}(X,Y)$ is condensation complete for all $X,Y\in{\mathcal C}$ and if every condensation monad in ${\mathcal C}$ extends to a condensation. A 0-category is always assumed to be condensation complete.

We use KarCat_n (resp. $E_m\operatorname{KarCat}_n$, $\operatorname{KarCat}_n^+$, $\operatorname{KarCat}_n^R$, etc.) to denote the full subcategory of Cat_n (resp. $E_m\operatorname{Cat}_n$, Cat_n^+ , Cat_n^R) formed by condensation complete (E_m -monoidal, additive, R-linear, etc.) n-categories.

Let \heartsuit_n denote the *n*-category generated by two copies of \spadesuit_n and a 1-morphism $Y \to Y'$:

$$f'$$
 $\begin{pmatrix} X' \\ g' \end{pmatrix} g' \qquad f \begin{pmatrix} X \\ g' \end{pmatrix} g$

The walking *n*-condensation bimodule \Diamond_n is the full subcategory of \heartsuit_n on X and X'.

A condensation bimodule in an *n*-category \mathcal{C} is a functor $\Diamond_n \to \mathcal{C}$.

The composition $m' \otimes_e m$ of two condensation bimodules m' and m over e is defined to be the condensate of the canonical condensation monad on m'm:

2. Idempotent completion

Definition

Let $\mathcal C$ be a 1-category. The idempotent completion or Karoubi completion of $\mathcal C$ is an idempotent complete 1-category $\mathrm{Kar}(\mathcal C)$ equipped with a functor $\iota:\mathcal C\to\mathrm{Kar}(\mathcal C)$ such that composition with ι induces an equivalence

$$\mathsf{Fun}(\mathrm{Kar}(\mathfrak{C}),\mathfrak{D})\simeq\mathsf{Fun}(\mathfrak{C},\mathfrak{D})$$

for any idempotent complete 1-category \mathcal{D} .

Remark

For $\mathcal{C}, \mathcal{D} \in \mathrm{Cat}_1$, we have a functor $\mathrm{Fun}(\mathcal{C}, \mathcal{D}) \to \mathrm{Fun}(\mathcal{C}, \mathrm{Kar}(\mathcal{D})) \simeq \mathrm{Fun}(\mathrm{Kar}(\mathcal{C}), \mathrm{Kar}(\mathcal{D}))$. We obtain a functor

$$\operatorname{Kar}: \operatorname{Cat}_1 \to \operatorname{Kar} \operatorname{Cat}_1, \quad \mathcal{C} \mapsto \operatorname{Kar} (\mathcal{C})$$

which is left adjoint to the inclusion $KarCat_1 \hookrightarrow Cat_1$.

Let $e: X \to X$ and $e': Y \to Y$ be idempotents. An e-e'-bimodule is 1-morphism $m: Y \to X$ such that $e \circ m = m = m \circ e'$. In the special case where $e' = \operatorname{Id}_Y$ we say that m is a left e-module. In the special case where $e = Id_X$ we say that m is a right e'-module.

$$X \stackrel{m}{\longleftarrow} Y$$

Example

If $f: X \to Y$ and $g: Y \to X$ exhibit Y as a retract of X, then g is a left $g \circ f$ -module and f is a right $g \circ f$ -module.

$$Y \stackrel{g \circ f}{\longleftrightarrow} X \stackrel{g}{\longleftrightarrow} Y$$

Hao Zheng

2. Idempotent completion

Proposition

Suppose that $f: X \to Y$ and $g: Y \to X$ exhibit Y as a retract of X. Then f (resp. g) exhibits Y as the

colimit (resp. limit) of the circle diagram X.

Therefore, if an idempotent admits a retract, then the retract is unique up to unique isomorphism.

Proof.

Let $m:X\to Z$ be a 1-morphism such that $m\circ (g\circ f)=m$, i.e. m is a right $g\circ f$ -module. We need to show that there exists a unique h rendering $m=h\circ f$. Indeed, h has to be $m\circ g$.

Proposition

Conversely, let $e: X \to X$ be an idempotent. If the circle diagram X admits a colimit (resp. limit) Y, then Y is a retract of X.

Proof.

Suppose that $f: X \to Y$ exhibits Y as the colimit of the circle diagram. Then there exists a unique $g: Y \to X$ rendering $e = g \circ f$. By the universal property of a colimit, $\operatorname{Id}_Y = f \circ g$.

Theorem

Define a 1-category $\operatorname{Kar}(\mathfrak{C})$ of which an object is an idempotent $e: X \to X$ and a 1-morphism is a bimodule. Then the functor $\iota: \mathfrak{C} \to \operatorname{Kar}(\mathfrak{C})$, $X \mapsto \operatorname{Id}_X$ exhibits $\operatorname{Kar}(\mathfrak{C})$ as the idempotent completion of \mathfrak{C} .

Proof.

First, $Kar(\mathcal{C})$ is idempotent complete: an idempotent $d: e \rightarrow e$ admits a retract d.

Let $\mathcal D$ be an idempotent complete 1-category. Given a functor $F:\mathcal C\to\mathcal D$, we define a functor $\hat F:\mathrm{Kar}(\mathcal C)\to\mathcal D$ as follows. On object, $\hat F(e)$ is a retract of F(e). On morphism, $\hat F(m)$ is induced by F(m).

In this way, we obtain a functor $\operatorname{Fun}(\mathcal{C}, \mathcal{D}) \to \operatorname{Fun}(\operatorname{Kar}(\mathcal{C}), \mathcal{D})$, $F \mapsto \hat{F}$. It is clear that $\hat{F} \circ \iota \simeq F$. By the uniqueness of retract, $\widehat{G} \circ \iota \simeq G$ for $G : \operatorname{Kar}(\mathcal{C}) \to \mathcal{D}$.

2. Idempotent completion

Remark

If \mathcal{C} is additive, then $\mathrm{Kar}(\mathcal{C})$ is also additive: the direct sum of two idempotents is also an idempotent and the sum of two bimodules is also a bimodule.

Remark

The functor $\iota: \mathcal{C} \to \mathrm{Kar}(\mathcal{C})$ is fully faithful.

Let \mathcal{C} be a (small) 1-category and let $\mathcal{P}(\mathcal{C}) = \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{Cat_0})$ be the category of presheaves. An object $F \in \mathcal{P}(\mathcal{C})$ is tiny or completely compact if the representable functor $\operatorname{Hom}_{\mathcal{P}(\mathcal{C})}(F,-):\mathcal{P}(\mathcal{C}) \to \operatorname{Cat_0}$ preserves (small) colimits. We use $\operatorname{Cau}(\mathcal{C})$ to denote the full subcategory of $\mathcal{P}(\mathcal{C})$ formed by tiny objects and refer to it as the Cauchy completion of \mathcal{C} . The Yoneda embedding $j:\mathcal{C} \hookrightarrow \mathcal{P}(\mathcal{C})$ factors through $\operatorname{Cau}(\mathcal{C})$.

Theorem

The Yoneda embedding $j : \mathbb{C} \hookrightarrow \operatorname{Cau}(\mathbb{C})$ exhibits $\operatorname{Cau}(\mathbb{C})$ as the idempotent completion of \mathbb{C} .

Proof.

Since Cat_0 has (small) colimits, it is idempotent complete. Thus the embedding $\mathcal{C} \hookrightarrow \operatorname{Kar}(\mathcal{C})$ induces an equivalence $\mathcal{P}(\operatorname{Kar}(\mathcal{C})) \simeq \mathcal{P}(\mathcal{C})$ so that $\operatorname{Cau}(\operatorname{Kar}(\mathcal{C})) \simeq \operatorname{Cau}(\mathcal{C})$. Thus $j:\mathcal{C} \hookrightarrow \operatorname{Cau}(\mathcal{C})$ factors through $\operatorname{Kar}(\mathcal{C})$. It remains to show that every $F \in \operatorname{Cau}(\mathcal{C})$ is a retract of some j(X).

Suppose $F = \varinjlim j(X_{\alpha})$. Then $\operatorname{Hom}_{\mathcal{P}(\mathcal{C})}(F,F) \simeq \varinjlim \operatorname{Hom}_{\mathcal{P}(\mathcal{C})}(F,j(X_{\alpha}))$. Therefore, Id_F is the image of some $F \to j(X_{\alpha})$, i.e. Id_F factors through $j(X_{\alpha})$. That is, F is a retract of $j(X_{\alpha})$.

3. Condensation completion

Definition

Let $\mathcal C$ be a *n*-category. The condensation completion or Karoubi completion of $\mathcal C$ is a *n*-category $\mathrm{Kar}(\mathcal C)$ equipped with a functor $\iota:\mathcal C\to\mathrm{Kar}(\mathcal C)$ such that composition with ι induces an equivalence

$$\mathsf{Fun}(\mathsf{Kar}(\mathfrak{C}), \mathfrak{D}) \simeq \mathsf{Fun}(\mathfrak{C}, \mathfrak{D})$$

for any condensation complete n-category \mathfrak{D} .

Remark

For $\mathcal{C}, \mathcal{D} \in \operatorname{Cat}_n$, we have a functor $\operatorname{Fun}(\mathcal{C}, \mathcal{D}) \to \operatorname{Fun}(\mathcal{C}, \operatorname{Kar}(\mathcal{D})) \simeq \operatorname{Fun}(\operatorname{Kar}(\mathcal{C}), \operatorname{Kar}(\mathcal{D}))$. We obtain a functor

$$\operatorname{Kar}:\operatorname{Cat}_n\to\operatorname{Kar}\operatorname{Cat}_n,\quad \mathfrak{C}\mapsto\operatorname{Kar}(\mathfrak{C})$$

which is left adjoint to the inclusion $KarCat_n \hookrightarrow Cat_n$.

Proposition

Let \mathcal{C} be an n-category whose hom categories are condensation complete. Suppose that a condensation monad $e: \clubsuit_n \to \mathcal{C}$ admits a condensate Y. Then Y is the colimit (resp. limit) of the diagram e.

Therefore, if a condensation monad admits a condensate, then the condensate is unique up to a contractible space of choices.

Proof.

Let $m: X \to Z$ be a right e-module. If $m = h \circ f$, then the condensation $f \circ g \to \mathrm{Id}_Y$ induces a condensation $m \circ g \to h$. Indeed, there is a condensation monad on $m \circ g$ taking the desired h as a condensate.

Proposition

Conversely, if a condensation monad $e: \clubsuit_n \to \mathbb{C}$ admits a colimit (resp. limit) Y, then Y is a condensate of e.

Proof.

Suppose that $f: X \to Y$ exhibits Y as the colimit of the diagram e. Then the trivial right e-module $e: X \to X$ determines a 1-morphism $g: Y \to X$. Moreover, the condensation $f \circ e \to f$ determines a condensation $f \circ g \to \operatorname{Id}_Y$.

_

Remark

If $\mathcal C$ is a condensation complete n-category, then $\operatorname{Fun}(\mathcal D,\mathcal C)$ is also condensation complete for any n-category $\mathcal D$ becase $\operatorname{Fun}(\clubsuit_n,\operatorname{Fun}(\mathfrak D,\mathcal C))\simeq\operatorname{Fun}(\mathfrak D,\operatorname{Fun}(\clubsuit_n,\mathcal C))\simeq\operatorname{Fun}(\spadesuit_n,\operatorname{Fun}(\mathfrak D,\mathcal C))$.

Remark

We have a canonical equivalence for $\mathcal{C}, \mathcal{D} \in \operatorname{Cat}_n$

$$Kar(\mathcal{C} \times \mathcal{D}) \simeq Kar(\mathcal{C}) \times Kar(\mathcal{D})$$

because $\operatorname{Fun}(\mathcal{C} \times \mathcal{D}, \mathcal{E}) \simeq \operatorname{Fun}(\mathcal{C}, \operatorname{Fun}(\mathcal{D}, \mathcal{E})) \simeq \operatorname{Fun}(\operatorname{Kar}(\mathcal{C}), \operatorname{Fun}(\operatorname{Kar}(\mathcal{D}), \mathcal{E})) \simeq \operatorname{Fun}(\operatorname{Kar}(\mathcal{C}) \times \operatorname{Kar}(\mathcal{D}), \mathcal{E})$ for $\mathcal{E} \in \operatorname{Kar}\operatorname{Cat}_n$.

Remark

For $\mathcal{C} \in \operatorname{Cat}_n$, we have an n-category $\hat{\mathcal{C}}$ such that $O(\hat{\mathcal{C}}) = O(\mathcal{C})$ and $\operatorname{Hom}_{\hat{\mathcal{C}}}(X,Y) = \operatorname{Kar}(\operatorname{Hom}_{\mathcal{C}}(X,Y))$ for $X,Y \in \mathcal{C}$.

Note that $\mathrm{Kar}(\hat{\mathbb{C}})\simeq\mathrm{Kar}(\mathbb{C})$. Therefore, to construct $\mathrm{Kar}(\mathbb{C})$ we may assume that \mathbb{C} has condensation complete hom categories.

Theorem

Define an n-category $\operatorname{Kar}({\mathfrak C})$ of which an object is a condensation monad $e: \clubsuit_n \to {\mathfrak C}$ and a 1-morphism is a bimodule. Then the functor $\iota: {\mathfrak C} \to \operatorname{Kar}({\mathfrak C})$ exhibits $\operatorname{Kar}({\mathfrak C})$ as the condensation completion of ${\mathfrak C}$.

Proof.

First, $Kar(\mathcal{C})$ is condensation complete: a condensation monad $\clubsuit_n \to Kar(\mathcal{C})$ admits a condensate given by the composition $\clubsuit_n \to Kar(\mathcal{C}) \to \mathcal{C}$.

Let $\mathcal D$ be a condensation complete n-category. Given a functor $F:\mathcal C\to\mathcal D$, we define a functor $\hat F:\mathrm{Kar}(\mathcal C)\to\mathcal D$ as follows. On object, $\hat F(e)$ is a condensate of F(e). On morphism, $\hat F(m)$ is induced by F(m).

In this way, we obtain a functor $\operatorname{Fun}(\mathcal{C}, \mathcal{D}) \to \operatorname{Fun}(\operatorname{Kar}(\mathcal{C}), \mathcal{D})$, $F \mapsto \hat{F}$. It is clear that $\hat{F} \circ \iota \simeq F$. By the uniqueness of condensate, $\widehat{G} \circ \iota \simeq G$ for $G : \operatorname{Kar}(\mathcal{C}) \to \mathcal{D}$.

Remark

If \mathcal{C} is additive, then $\mathrm{Kar}(\mathcal{C})$ is also additive. Therefore, the functor $\mathrm{Kar}: \mathrm{Cat}_n \to \mathrm{Kar}\mathrm{Cat}_n$ restricts to a functor

$$\operatorname{Kar}: \operatorname{Cat}_n^+ \to \operatorname{Kar} \operatorname{Cat}_n^+, \quad \mathcal{C} \mapsto \operatorname{Kar} (\mathcal{C})$$

which is left adjoint to the inclusion $KarCat_n^+ \hookrightarrow Cat_n^+$.

Remark

Recall that $\operatorname{Cat}_n^R = \operatorname{Fun}^+(B^{n+1}R,\operatorname{Cat}_n^+)$ and $\operatorname{KarCat}_n^R = \operatorname{Fun}^+(B^{n+1}R,\operatorname{KarCat}_n^+)$.

The functor $\operatorname{Kar}:\operatorname{Cat}_n^+ \to \operatorname{Kar}\operatorname{Cat}_n^+$ induces a functor

$$\operatorname{Kar}:\operatorname{Cat}_n^R \to \operatorname{Kar}\operatorname{Cat}_n^R, \quad \mathcal{C} \mapsto \operatorname{Kar}(\mathcal{C})$$

which is left adjoint to the inclusion $\operatorname{KarCat}_n^R \hookrightarrow \operatorname{Cat}_n^R$.

3. Condensation completion

Let \mathcal{C} be a (small) n-category whose hom categories are condensation complete. Let $\mathcal{P}(\mathcal{C}) = \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{Kar}\operatorname{Cat}_{n-1})$. An object $F \in \mathcal{P}(\mathcal{C})$ is tiny or completely compact if the representable functor $\operatorname{Hom}_{\mathcal{P}(\mathcal{C})}(F,-): \mathcal{P}(\mathcal{C}) \to \operatorname{Kar}\operatorname{Cat}_{n-1}$ preserves (small) colimits. We use $\operatorname{Cau}(\mathcal{C})$ to denote the full subcategory of $\mathcal{P}(\mathcal{C})$ formed by tiny objects and refer to it as the Cauchy completion of \mathcal{C} . The Yoneda embedding $j: \mathcal{C} \hookrightarrow \mathcal{P}(\mathcal{C})$ factors through $\operatorname{Cau}(\mathcal{C})$.

Theorem

The Yoneda embedding $j: \mathbb{C} \hookrightarrow \mathrm{Cau}(\mathbb{C})$ exhibits $\mathrm{Cau}(\mathbb{C})$ as the condensation completion of \mathbb{C} .

Proof.

Since $\operatorname{KarCat}_{n-1}$ has (small) colimits, it is condensation complete. Thus the embedding $\mathcal{C} \hookrightarrow \operatorname{Kar}(\mathcal{C})$ induces an equivalence $\mathcal{P}(\operatorname{Kar}(\mathcal{C})) \simeq \mathcal{P}(\mathcal{C})$ so that $\operatorname{Cau}(\operatorname{Kar}(\mathcal{C})) \simeq \operatorname{Cau}(\mathcal{C})$. Thus $j : \mathcal{C} \hookrightarrow \operatorname{Cau}(\mathcal{C})$ factors through $\operatorname{Kar}(\mathcal{C})$. It remains to show that every $F \in \operatorname{Cau}(\mathcal{C})$ is a condensate of some j(X).

Suppose $F = \varinjlim j(X_{\alpha})$. Then $\operatorname{Hom}_{\mathcal{P}(\mathcal{C})}(F,F) \simeq \varinjlim \operatorname{Hom}_{\mathcal{P}(\mathcal{C})}(F,j(X_{\alpha}))$. Let $\mathcal{D} \subset \operatorname{Hom}_{\mathcal{P}(\mathcal{C})}(F,F)$ be the full subcategory formed by the images of $\operatorname{Hom}_{\mathcal{P}(\mathcal{C})}(F,j(X_{\alpha}))$. Then $\operatorname{Kar}(\mathcal{D}) = \operatorname{Hom}_{\mathcal{P}(\mathcal{C})}(F,F)$. Therefore, there exists $g: F \to j(X_{\alpha})$ such that Id_F is a condensate of the image of g. That is, F is a condensate of $j(X_{\alpha})$. \square

Let \mathcal{C} be a (small) condensation complete monoidal n-category. We use $\Sigma \mathcal{C}$ to denote $\mathrm{Kar}(\mathcal{B}\mathcal{C})$. Then the functor

$$\Sigma: E_m \mathrm{KarCat}_n \to E_{m-1} \mathrm{KarCat}_{n+1}$$

is left adjoint to

$$\Omega: E_{m-1} \mathrm{KarCat}_{n+1} \to E_m \mathrm{KarCat}_n.$$

Note that $\mathcal{P}(\mathcal{BC}) = \operatorname{Fun}(\mathcal{BC}^{\operatorname{rev}}, \operatorname{KarCat}_n) = \operatorname{\mathsf{RMod}}_{\mathbb{C}}(\operatorname{KarCat}_n)$. The embedding $\Sigma \mathcal{C} \hookrightarrow \operatorname{\mathsf{RMod}}_{\mathbb{C}}(\operatorname{KarCat}_n)$ is given by $X \mapsto \operatorname{\mathsf{Hom}}_{\Sigma \mathcal{C}}(\bullet, X)$.

Theorem

Let ${\mathbb C}$ be a (small) condensation complete monoidal n-category. The functor

 $\mathsf{Hom}_{\Sigma^{\mathfrak{C}}}(ullet,-):\Sigma^{\mathfrak{C}}\to\mathsf{RMod}_{\mathfrak{C}}(\mathrm{KarCat}_n)$ is fully faithful. Moreover, the following conditions are equivalent for an object $\mathfrak{M}\in\mathsf{RMod}_{\mathfrak{C}}(\mathrm{KarCat}_n)$:

- 1 M belongs to the essential image.
- **2** The functor $\operatorname{Fun}_{\operatorname{Crev}}(\mathcal{M},-):\operatorname{\mathsf{RMod}}_{\operatorname{\mathbb{C}}}(\operatorname{KarCat}_n)\to\operatorname{KarCat}_n$ preserves (small) colimits.
- **3** The evaluation functor $\operatorname{Fun}_{\mathbb{C}^{\operatorname{rev}}}(\mathbb{M},\mathbb{C}) \times \mathbb{M} \to \mathbb{C}$ exhibits the left \mathbb{C} -module $\operatorname{Fun}_{\mathbb{C}^{\operatorname{rev}}}(\mathbb{M},\mathbb{C})$ dual to \mathbb{M} .
- 4 \mathcal{M} has a left dual in $\mathsf{LMod}_{\mathcal{C}}(\mathrm{KarCat}_n)$.

Proof.

- $(1)\Leftrightarrow (2)$ is due to the previous theorem. $(2)\Rightarrow (3)$ The unit map is
- $\bullet \to \mathsf{Fun}_{\mathcal{C}^{\mathrm{rev}}}(\mathcal{M},\mathcal{M}) \simeq \mathcal{M} \times_{\mathcal{C}} \mathsf{Fun}_{\mathcal{C}^{\mathrm{rev}}}(\mathcal{M},\mathcal{C}). \ \ (3) \Rightarrow (4) \ \mathsf{is} \ \mathsf{trivial}. \ \ (4) \Rightarrow (2) \ \mathsf{Fun}_{\mathcal{C}^{\mathrm{rev}}}(\mathcal{M},-) \simeq \times_{\mathcal{C}} \mathcal{M}^{\mathcal{L}}. \quad \ \Box$

4. Duality

Definition

A condensation $X \to Y$ is unital if the 2-morphism $f \circ g \to \operatorname{Id}_Y$ exhibits $f: X \to Y$ left dual to $g: Y \to X$. A condensation $X \to Y$ is counital if the 2-morphism $\operatorname{Id}_Y \to f \circ g$ exhibits $f: X \to Y$ right dual to $g: Y \to X$.

Remark

If a condensation $X \to Y$ is unital, then the unit map $u : \operatorname{Id}_X \to g \circ f$ supplies a unit for the nonunital algebra $g \circ f$ in $\operatorname{Hom}_{\mathbb{C}}(X,X)$. If a condensation $X \to Y$ is counital, then the counit map $g \circ f \to \operatorname{Id}_X$ supplies a counit for the nonunital coalgebra $g \circ f$.

4. Duality

Proposition

Let $f: X \to Y$ be a condensation. If the 1-morphism $f: X \to Y$ admits a right adjoint f^R , then the counit map $v: f \circ f^R \to \operatorname{Id}_Y$ extends to a condensation (in particular, the condensation $f: X \to Y$ can be modified to a unital one).

Proof.

Let u' be the composition $\operatorname{Id}_Y \xrightarrow{g_1} f \circ g \xrightarrow{u} f \circ f^R \circ f \circ g \xrightarrow{f_1} f \circ f^R$. Then $v \circ u' \simeq f_1 \circ g_1$ condense to $\operatorname{Id}_{\operatorname{Id}_Y}$.

Remark

In an n-category ${\mathbb C}$ that has duals, we may assume a condensation f:X oup Y is given by consecutive counit maps $v_1:f\circ f^R o \operatorname{Id}_Y,\ v_2:v_1\circ v_1^R o \operatorname{Id}_{\operatorname{Id}_Y},\ ...,$ such that v_{n-1} is a retraction.

Theorem

Let $\mathcal C$ be an n-category whose hom categories are condensation complete. If $\mathcal C$ has duals, then so is $\operatorname{Kar}(\mathcal C)$.

Proof.

We need to show that every 1-morphism $\mu: Y \to Y'$ in $\mathrm{Kar}(\mathcal{C})$ admits a right dual. Choose condensations $f: X \to Y$ and $f': X' \to Y'$ where $X, X' \in \mathcal{C}$.

First, the 1-morphism $(g \circ f)^R \circ g$ supports a condensation monad, condensing to f^R . Similarly, f admits a left dual.

In general, $f' \circ (f'^R \circ \mu \circ f) \circ f^L$ condense to μ . Thus $f \circ (f'^R \circ \mu \circ f)^R \circ f'^R$ supports a condensation monad, condensing to the desired μ^R .

4. Duality

Condensation completion

4. Dualit