Selected topics on category theory

Hao Zheng

Spring, 2022

Beijing Institute of Mathematical Sciences and Applications Institute for Applied Mathematics, Tsinghua University

Hao Zheng Selected topics on category theory

Higher categories

A unitary fusion *n*-category \mathcal{C} involves the following structures:

- 1 ℓ is an *n*-category.
- **2** C is a monoidal *n*-category.
- 3 C has duals.
- 4 C is additive.
- 5 C is \mathbb{C} -linear.
- 6 C is semisimple.
- **7** C carries a *-structure.

1. n-Categories

1. *n*-Categories

Definition

A 0-category is a set \mathcal{C} whose members are called objects.

A functor $F : \mathcal{C} \to \mathcal{D}$ between two 0-categories is a map of sets.

The Cartesian product $\mathfrak{C}\times\mathfrak{D}$ of two 0-categories is also a 0-category.

A singleton is called a trivial 0-category.

For 0-categories \mathcal{C} and \mathcal{D} , the collection of functors $F : \mathcal{C} \to \mathcal{D}$ form a 0-category Fun(\mathcal{C}, \mathcal{D}).

n-Categories

Definition

A 1-category $\mathcal C$ consists of the following data:

- A set $O(\mathcal{C})$ whose members are called objects. We use $X \in \mathcal{C}$ to denote the fact that X is an object of \mathcal{C} .
- For any $X, Y \in \mathcal{C}$, a 0-category $\text{Hom}_{\mathcal{C}}(X, Y)$ whose members are called 1-morphisms from X to Y. We use the notation $f : X \to Y$ or $X \xrightarrow{f} Y$ to denote a 1-morphism.
- For any $X, Y, Z \in \mathcal{C}$, a functor $\operatorname{Hom}_{\mathcal{C}}(Y, Z) \times \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{C}}(X, Z)$, $(g, f) \mapsto g \circ f$, called the composition law.

These data satisfy the following conditions:

- (Unity) For any $X \in C$ there exists a 1-morphism $Id_X : X \to X$, called the identity 1-morphism of X, such that $f \circ Id_X = f = Id_Y \circ f$ for any $f : X \to Y$.
- (Associativity) For any $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} W$, $(h \circ g) \circ f = h \circ (g \circ f)$.

n-Categories

Example

A 0-category can be viewed as a 1-category whose 1-morphisms are only the identity 1-morphisms. In particular, a trivial 0-category (i.e. a singleton) is called a trivial 1-category.

Example

The collection of (small) 0-categories and functors form a 1-category Cat_0 .

The Cartesian product $\mathfrak{C} \times \mathfrak{D}$ of two 1-categories is defined by

 $O(\mathbb{C} \times \mathbb{D}) = O(\mathbb{C}) \times O(\mathbb{D}),$

 $\operatorname{Hom}_{\mathbb{C}\times\mathbb{D}}((X,Y),(X',Y'))=\operatorname{Hom}_{\mathbb{C}}(X,X')\times\operatorname{Hom}_{\mathbb{D}}(Y,Y').$

More precisely, an object of $\mathcal{C} \times \mathcal{D}$ is a pair of objects (X, Y) and a 1-morphism is a pair of 1-morphisms (f, g).

Given a 1-category \mathcal{C} , we use \mathcal{C}^{op} to denote the 1-category obtained by reversing the 1-morphisms of \mathcal{C} , i.e. $O(\mathcal{C}^{\text{op}}) = O(\mathcal{C})$, $\text{Hom}_{\mathcal{C}^{\text{op}}}(X, Y) = \text{Hom}_{\mathcal{C}}(Y, X)$.

Definition

A functor $F : \mathbb{C} \to \mathbb{D}$ between two 1-categories consists of the following data:

- A map of sets $F: O(\mathcal{C}) \to O(\mathcal{D})$.
- For any $X, Y \in \mathcal{C}$, a functor $\operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y))$, $f \mapsto F(f)$.

These data satisfy the following conditions:

- For any $X \in \mathcal{C}$, $F(Id_X) = Id_{F(X)}$.
- For any $X \xrightarrow{f} Y \xrightarrow{g} Z$, $F(g \circ f) = F(g) \circ F(f)$.

Selected topics on category theory

Hao Zheng

n-Categories

Definition

Let $F, G : \mathcal{C} \to \mathcal{D}$ be functors between 1-categories. A natural transformation $\xi : F \to G$ consists of the following data:

• For any $X \in \mathcal{C}$, a 1-morphisms $\xi_X : F(X) \to G(X)$.

The following diagram is commutative for any 1-morphism $f: X \to Y$ of \mathcal{C} :

For 1-categories \mathcal{C} and \mathcal{D} , the collection of functors $F : \mathcal{C} \to \mathcal{D}$ and natural transformations form a 1-category $Fun(\mathcal{C}, \mathcal{D})$.

Hao Zheng Selected topics on category theory Informally speaking, an *n*-category $\mathcal C$ consists of the following data:

- A set $O(\mathcal{C})$ whose members are called objects.
- For any $X, Y \in \mathcal{C}$, an (n-1)-category $Hom_{\mathcal{C}}(X, Y)$.
- For any $X, Y, Z \in C$, a functor \circ : Hom_C $(Y, Z) \times$ Hom_C $(X, Y) \rightarrow$ Hom_C(X, Z), called the composition law.
- A collection of coherence relations and conditions.

An object of $\text{Hom}_{\mathcal{C}}(X, Y)$ is called a 1-morphism from X to Y. A k-morphism of $\text{Hom}_{\mathcal{C}}(X, Y)$ is called a (k + 1)-morphism of \mathcal{C} .

We say that two *n*-morphisms f and g of \mathbb{C} are equivalent and denote $f \simeq g$ if f = g. By induction on $1 \le k \le n$, we say that a *k*-morphism $f : X \to Y$ is invertible if there exists a *k*-morphism $g : Y \to X$ such that $g \circ f \simeq \operatorname{Id}_X$ and $f \circ g \simeq \operatorname{Id}_Y$. We say that two objects or (k-1)-morphisms X and Y are equivalent and denote $X \simeq Y$ if there is an invertible 1-morphism or *k*-morphism between them.

Hao Zheng

The Cartesian product $\mathcal{C} \times \mathcal{D}$ of two *n*-categories is defined by

 $O(\mathbb{C} \times \mathbb{D}) = O(\mathbb{C}) \times O(\mathbb{D}),$

$$\operatorname{Hom}_{\mathfrak{C}\times\mathfrak{D}}((X,Y),(X',Y'))=\operatorname{Hom}_{\mathfrak{C}}(X,X')\times\operatorname{Hom}_{\mathfrak{D}}(Y,Y').$$

More precisely, an object of $\mathcal{C} \times \mathcal{D}$ is a pair of objects (X, Y) and a k-morphism is a pair of k-morphisms (f, g).

An (n-1)-category can be viewed as an *n*-category whose *n*-morphisms are only the identity *n*-morphisms. In particular, a trivial 0-category (i.e. a singleton) is called a trivial *n*-category. A trivial *n*-category consists of a single object and a single *k*-morphism for $1 \le k \le n$.

For an *n*-category \mathcal{C} , we use $\mathcal{C}^{\text{op}k}$ to denote the *n*-category obtained by reversing all the *k*-morphisms. In particular, \mathcal{C}^{op} denotes \mathcal{C}^{op1} .

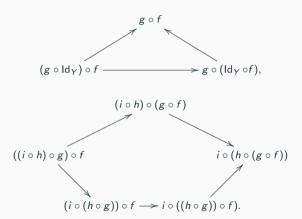
Definition

A 2-category $\mathcal C$ consists of the following data:

- A set $O(\mathbb{C})$ whose members are called objects.
- For any $X, Y \in \mathcal{C}$, a 1-category $\operatorname{Hom}_{\mathcal{C}}(X, Y)$.
- For any $X, Y, Z \in \mathcal{C}$, a functor \circ : Hom_{\mathcal{C}} $(Y, Z) \times Hom_{\mathcal{C}}(X, Y) \rightarrow Hom_{\mathcal{C}}(X, Z)$.
- For any $X \in \mathcal{C}$, a 1-morphism $Id_X : X \to X$.
- Natural 2-isomorphisms $Id_X \circ f \simeq f \simeq f \circ Id_Y$ for 1-morphisms $f : X \to Y$ (we will assume without loss of generality that they are the identities).
- A natural 2-isomorphism $(h \circ g) \circ f \simeq h \circ (g \circ f)$ for $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} W$.

These data satisfy the triangle and pentagon conditions.

For
$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} W \xrightarrow{i} V$$
,



BIMSA & IMATH

n-Categories

Definition

A functor $F : \mathfrak{C} \to \mathfrak{D}$ between 2-categories consists of the following data:

- A map of sets $F: O(\mathcal{C}) \to O(\mathcal{D})$.
- For any $X, Y \in \mathbb{C}$, a functor $F : \operatorname{Hom}_{\mathbb{C}}(X, Y) \to \operatorname{Hom}_{\mathbb{D}}(F(X), F(Y))$.
- For any $X \in \mathcal{C}$, a 2-isomorphism $F(Id_X) \simeq Id_{F(X)}$ (we will assume without loss of generality that it is the identity).
- A natural 2-isomorphism $F(g \circ f) \simeq F(g) \circ F(f)$ for $X \xrightarrow{f} Y \xrightarrow{g} Z$.

These data satisfy the following conditions for $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} W$:

$$\begin{array}{ccc} F(f \circ \operatorname{Id}_Y) & \longrightarrow & F(f) \circ F(\operatorname{Id}_Y) & & F(h \circ g \circ f) & \longrightarrow & F(h \circ g) \circ F(f) \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ F(f) & \longleftarrow & & F(f) \circ \operatorname{Id}_{F(Y)}, & & F(h) \circ F(g \circ f) & \longrightarrow & F(h) \circ F(g) \circ F(f). \end{array}$$

Hao Zheng

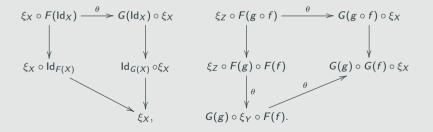
1. *n*-Categories

Definition

Let $F, G : \mathcal{C} \to \mathcal{D}$ be functors between 2-categories. A natural transformation $\xi : F \to G$ consists of the following data:

- For any $X \in \mathcal{C}$, a 1-morphism $\xi_X : F(X) \to G(X)$.
- A natural 2-isomorphism $\theta_f : \xi_Y \circ F(f) \simeq G(f) \circ \xi_X$ for $f : X \to Y$.

These data satisfy the following conditions for $X \xrightarrow{f} Y \xrightarrow{g} Z$:



Selected topics on category theory

Hao Zheng

Definition

Let $F, G : \mathbb{C} \to \mathbb{D}$ be functors between 2-categories and $\xi, \zeta : F \to G$ be natural transformations. A modification or 2-natural transformation $\eta : \xi \to \zeta$ consists of the following data:

• For any $X \in \mathbb{C}$, a 2-morphism $\eta_X : \xi_X \to \zeta_X$.

These data satisfy the following conditions for $X \xrightarrow{f} Y$:

Hao Zheng Selected topics on category theory

n-Categories

In general, a functor $F : \mathbb{C} \to \mathbb{D}$ between two *n*-categories consists of the following data:

- A map of sets $F: O(\mathcal{C}) \to O(\mathcal{D})$.
- For any $X, Y \in \mathcal{C}$, a functor $F : \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y))$.
- A collection of coherence relations and conditions.

A natural transformation $\xi: F \to G$ between functors consists of the following data:

- For any $X \in \mathcal{C}$, a 1-morphism $\xi_X : F(X) \to G(X)$.
- A collection of coherence relations and conditions.

A k-natural transformation $\eta: \xi \to \zeta$ between (k-1)-natural transformations where $2 \le k \le n$ consists of the following data:

- For any $X \in \mathcal{C}$, a *k*-morphism $\eta_X : \xi_X \to \zeta_X$.
- A collection of coherence relations and conditions.

Hao Zheng

For *n*-categories \mathcal{C} and \mathcal{D} , the collection of functors $F : \mathcal{C} \to \mathcal{D}$ and (higher) natural transformations form an *n*-category Fun(\mathcal{C}, \mathcal{D}).

The collection of (small) *n*-categories and functors form an (n + 1)-category Cat_n such that $\operatorname{Hom}_{\operatorname{Cat}_n}(\mathbb{C}, \mathbb{D}) = \operatorname{Fun}(\mathbb{C}, \mathbb{D}).$

We say that a functor or (higher) natural transformation is invertible if it is an invertible morphism of Cat_n . We say that two *n*-categories are equivalent if they are equivalent objects of Cat_n . An invertible functor is called an equivalence. An invertible (higher) natural transformation is also called a (higher) natural equivalence.

We say that an n-category is contractible if it is equivalent to a trivial n-category.

n-Categories

Example

For two rings A and B, the A-B-bimodules and bimodules maps form a 1-category $BMod_{A|B}$.

The collection of rings form a 2-category Mor where $\operatorname{Hom}_{Mor}(A, B) = \operatorname{BMod}_{A|B}$. The composition $\circ : \operatorname{Hom}_{Mor}(B, C) \times \operatorname{Hom}_{Mor}(A, B) \to \operatorname{Hom}_{Mor}(A, C)$ is given by $(M, N) \mapsto N \otimes_B M$.

Let \mathcal{B} be a 1-category with a single object \bullet and let $\mathcal{C} = Hom_{\mathcal{B}}(\bullet, \bullet)$. Then \mathcal{C} is a monoid with multiplication $\circ : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ and unit Id $_{\bullet}$. Conversely, every monoid is obtained in this way.

Let \mathcal{B} be a 2-category with a single object \bullet and let $\mathcal{C} = Hom_{\mathcal{B}}(\bullet, \bullet)$. Then \mathcal{C} is a monoidal 1-category with tensor product $\circ : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ and tensor unit Id $_{\bullet}$. Conversely, every monoidal 1-category is obtained in this way.

Definition

A monoidal *n*-category or E_1 -monoidal *n*-category is a pair (\mathbb{C} , \mathbb{BC}) where \mathbb{BC} is an (n + 1)-category with a single object \bullet and $\mathbb{C} = \text{Hom}_{\mathbb{BC}}(\bullet, \bullet)$. By abusing terminology, we also refer to \mathbb{C} as a monoidal *n*-category. The identity 1-morphism Id $_{\bullet}$ is referred to as the tensor unit of \mathbb{C} and denoted by $1_{\mathbb{C}}$. The functor $\circ : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ is usually denoted by $\otimes : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$.

A monoidal 0-category is a monoid. A monoidal 1-category is the one in the usual sense.

Definition

An E_0 -monoidal *n*-category is a pair ($\mathcal{C}, 1_{\mathcal{C}}$) where \mathcal{C} is an *n*-category and $1_{\mathcal{C}} \in \mathcal{C}$ is a distinguished object. When $1_{\mathcal{C}}$ is clear from the context, we use \mathcal{C} to denote an E_0 -monoidal *n*-category.

An E_0 -monoidal functor $(\mathcal{C}, 1_{\mathcal{C}}) \to (\mathcal{D}, 1_{\mathcal{D}})$ between E_0 -monoidal *n*-categories is a functor $F : \mathcal{C} \to \mathcal{D}$ such that $F(1_{\mathcal{C}}) = 1_{\mathcal{D}}$. An E_0 -monoidal (higher) natural transformation is a (higher) natural transformation η such that $\eta_{1_{\mathcal{C}}} = \mathsf{Id}$.

We use $E_0 \operatorname{Cat}_n$ to denote the (n + 1)-category formed by the E_0 -monoidal *n*-categories, functors and (higher) natural transformations and use $\operatorname{Fun}^{E_0}((\mathcal{C}, 1_{\mathcal{C}}), (\mathcal{D}, 1_{\mathcal{D}}))$ to denote $\operatorname{Hom}_{E_0 \operatorname{Cat}_n}((\mathcal{C}, 1_{\mathcal{C}}), (\mathcal{D}, 1_{\mathcal{D}}))$ which is a subcategory of $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$.

For a monoidal *n*-category \mathbb{C} , the pair $(B\mathbb{C}, \bullet)$ defines an object of $E_0 \operatorname{Cat}_{n+1}$. We use $E_1 \operatorname{Cat}_n$ to denote the full subcategory of $E_0 \operatorname{Cat}_{n+1}$ consisting of $(B\mathbb{C}, \bullet)$ for all monoidal *n*-categories \mathbb{C} . It turns out that $E_1 \operatorname{Cat}_n$ is an (n+1)-category rather than an (n+2)-category. We use $\operatorname{Fun}^{E_1}(\mathbb{C}, \mathbb{D})$ to denote $\operatorname{Fun}^{E_0}(B\mathbb{C}, B\mathbb{D})$, the *n*-category formed by monoidal functors and invertible monoidal (higher) natural transformations.

We have a pair of functors

$$B: E_1 \operatorname{Cat}_n \to E_0 \operatorname{Cat}_{n+1}, \quad \mathcal{C} \mapsto (B\mathcal{C}, \bullet),$$

$$\Omega: E_0 \operatorname{Cat}_{n+1} \to E_1 \operatorname{Cat}_n, \quad (\mathcal{D}, 1_{\mathcal{D}}) \mapsto \operatorname{Hom}_{\mathcal{D}}(1_{\mathcal{D}}, 1_{\mathcal{D}})$$

where *B* is called the delooping functor and Ω is called the looping functor. By definition, Fun^{*E*₁}($\mathcal{C}, \Omega(\mathcal{D}, \mathbf{1}_{\mathcal{D}})$) = Fun^{*E*₀}((*B* \mathcal{C}, \bullet), *B* $\Omega(\mathcal{D}, \mathbf{1}_{\mathcal{D}})$). Therefore, *B* is left adjoint to Ω :

 $\mathsf{Fun}^{E_0}((B\mathfrak{C},\bullet),(\mathfrak{D},1_{\mathfrak{D}}))=\mathsf{Fun}^{E_1}(\mathfrak{C},\Omega(\mathfrak{D},1_{\mathfrak{D}})).$

Example

Let $\mathcal{C}, \mathcal{D} \in E_1$ Cat₀ be two monoids. A monoidal functor $\mathcal{C} \to \mathcal{D}$ is by definition an E_0 -monoidal functor $F : (B\mathcal{C}, \bullet) \to (B\mathcal{D}, \bullet)$ which is nothing but a homomorphism of monoids.

Let $\xi: F \to G$ be an E_0 -monoidal natural transformation. By definition, $F(\bullet) = G(\bullet) = \bullet$ and $\xi_{\bullet} = \mathsf{Id}_{\bullet}$ so that F(f) = G(f) for $f \in \mathbb{C}$. That is, $\xi = \mathsf{Id}_F$. Therefore, $\mathsf{Fun}^{E_1}(\mathbb{C}, \mathbb{D})$ is a 0-category rather than a 1-category. Therefore, $E_1 \mathsf{Cat}_0$ is the 1-category of monoids and homomorphisms.

Example

Let $\mathcal{C}, \mathcal{D} \in E_1 \operatorname{Cat}_1$ be two monoidal 1-categories. A monoidal functor $F : \mathcal{C} \to \mathcal{D}$ is by definition an E_0 -monoidal functor $F : (B\mathcal{C}, \bullet) \to (B\mathcal{D}, \bullet)$ which is a monoidal functor in the usual sense.

Let $\xi : F \to G$ be an E_0 -monoidal natural transformation. By definition, $F(\bullet) = G(\bullet) = \bullet$ and $\xi_{\bullet} = \mathsf{Id}_{\bullet}$ so that ξ is nothing but a monoidal natural isomorphism $F(f) \simeq G(f)$ in the usual sense.

By definition, an E_0 -monoidal 2-natural transformation $\xi \to \zeta$ is an identity. Therefore, E_1 Cat₁ is the 2-category of monoidal 1-categories, monoidal functors and monoidal natural isomorphisms.

Definition

By induction on $m \ge 2$, an E_m -monoidal *n*-category is pair ($\mathcal{C}, \mathcal{BC}$) where \mathcal{BC} is an E_{m-1} -monoidal (n+1)-category with a single object \bullet and $\mathcal{C} = \text{Hom}_{\mathcal{BC}}(\bullet, \bullet)$. By abusing terminology, we also refer to \mathcal{C} as an E_m -monoidal *n*-category.

Note that an E_m -monoidal *n*-category consists of a finite series ($\mathcal{C}, B\mathcal{C}, B^2\mathcal{C}, \ldots, B^m\mathcal{C}$).

For an E_m -monoidal *n*-category \mathcal{C} where $m \geq 1$, the pair $(B^m \mathcal{C}, \bullet)$ defines an object of $E_0 \operatorname{Cat}_{n+m}$. We use $E_m \operatorname{Cat}_n$ to denote the full subcategory of $E_0 \operatorname{Cat}_{n+m}$ consisting of $(B^m \mathcal{C}, \bullet)$ for all E_m -monoidal *n*-categories \mathcal{C} . It turns out that $E_m \operatorname{Cat}_n$ is an (n+1)-category rather than an (n+m+1)-category. We use $\operatorname{Fun}^{E_m}(\mathcal{C}, \mathcal{D})$ to denote $\operatorname{Fun}^{E_0}(B^m \mathcal{C}, B^m \mathcal{D})$, the *n*-category formed by E_m -monoidal functors and invertible E_m -monoidal (higher) natural transformations.

We have a pair of functors $B : E_m \operatorname{Cat}_n \to E_{m-1} \operatorname{Cat}_{n+1}$, $\mathcal{C} \mapsto B\mathcal{C}$, called the delooping functor, and $\Omega : E_{m-1} \operatorname{Cat}_{n+1} \to E_m \operatorname{Cat}_n$, $\mathcal{D} \mapsto \operatorname{Hom}_{\mathcal{D}}(1_{\mathcal{D}}, 1_{\mathcal{D}})$, called the looping functor. By definition, B is left adjoint to Ω :

 $\operatorname{\mathsf{Fun}}^{E_{m-1}}(B\mathfrak{C},\mathfrak{D})=\operatorname{\mathsf{Fun}}^{E_m}(\mathfrak{C},\Omega\mathfrak{D}).$

Example

Let $(\mathcal{C}, \mathcal{BC})$ be an E_2 -monoidal 0-category. That is, \mathcal{BC} is a monoidal 1-category with a single object \bullet and $\mathcal{C} = \text{Hom}_{\mathcal{BC}}(\bullet, \bullet)$.

We have a tensor product functor $\otimes : B\mathbb{C} \times B\mathbb{C} \to B\mathbb{C}$ so that we have $(X \circ X') \otimes (Y \circ Y') = (X \otimes Y) \circ (X' \otimes Y')$ for $X, X, Y, Y' \in \mathbb{C}$. The identity natural isomorphism $\bullet \otimes \bullet \simeq \bullet \simeq \bullet \otimes \bullet$ means that $Id_{\bullet} \otimes X = X = X \otimes Id_{\bullet}$.

Taking $Y = X' = Id_{\bullet}$ yields $X \otimes Y' = X \circ Y'$. Taking $X = Y' = Id_{\bullet}$ yields $X' \otimes Y = Y \circ X'$. Therefore, we obtain

$$X \circ Y = Y \circ X.$$

That is, C is an abelian monoid. Conversely, C determines the monoidal 1-category BC.

Moreover, an E_2 -monoidal functor $F : (\mathcal{C}, \mathcal{BC}) \to (\mathcal{D}, \mathcal{BD})$ is a monoidal functor $\mathcal{BC} \to \mathcal{BD}$ which is nothing but a homomorphism of monoids $\mathcal{C} \to \mathcal{D}$. Therefore, $E_2 \operatorname{Cat}_0$ is the 1-category of abelian monoids and homomorphisms.

Example

Let $(\mathcal{C}, \mathcal{BC})$ be an E_2 -monoidal 1-category. That is, \mathcal{BC} is a monoidal 2-category with a single object \bullet and $\mathcal{C} = \text{Hom}_{\mathcal{BC}}(\bullet, \bullet)$. Forgetting the monoidal structure of \mathcal{BC} , we see that \mathcal{C} is a monoidal 1-category with tensor product \circ and tensor unit Id $_{\bullet}$.

The monoidal structure of \mathcal{BC} induces natural isomorphisms $X \circ Y \simeq X \otimes Y \simeq Y \circ X$, promoting \mathcal{C} to a braided monoidal 1-category. Conversely, \mathcal{C} determines the monoidal 2-category \mathcal{BC} up to canonical monoidal equivalence. Therefore, $E_2 \operatorname{Cat}_1$ is canonically equivalent to the 2-category of braided monoidal 1-categories, braided monoidal functors and braided monoidal natural isomorphisms.

Moreover, for $m \ge 3$, $E_m \text{Cat}_1$ is canonically equivalent to the 2-category of symmetric monoidal 1-categories, symmetric monoidal functors and symmetric monoidal natural isomorphisms.

An E_2 -monoidal *n*-category is also referred to as a braided monoidal *n*-category. An E_3 -monoidal *n*-category is also referred to as a syleptic monoidal *n*-category.

We have an evident forgetful functor $E_{m+1}Cat_n \rightarrow E_mCat_n$.

Hypothesis (Delooping hypothesis)

The forgetful functor $E_{m+1}Cat_n \rightarrow E_mCat_n$ is an equivalence for $m \ge n+2$.

The (n + 1)-category $E_{\infty} \operatorname{Cat}_n$ of symmetric monoidal or E_{∞} -monoidal *n*-categories is defined to be $E_m \operatorname{Cat}_n$ for $m \ge n+2$.

For an E_m -monoidal *n*-category \mathbb{C} , we use \mathbb{C}^{opk} where k > -m to denote the E_m -monoidal *n*-category obtained by reversing all the *k*-morphisms, i.e. $B^m(\mathbb{C}^{\text{opk}}) = (B^m \mathbb{C})^{\operatorname{op}(k+m)}$. In particular, $\mathbb{C}^{\operatorname{op0}}$ is denoted by \mathbb{C}^{rev} and $\mathbb{C}^{\operatorname{op}(-1)}$ is denoted by $\overline{\mathbb{C}}$.

For example, there are three levels of E_m -monoidal 0-categories:

- E_0 -monoidal 0-category = set with a distinguished element,
- E_1 -monoidal 0-category = monoid,
- E_{∞} -monoidal 0-category = abelian monoid.

There are four levels of E_m -monoidal 1-categories:

- E_0 -monoidal 1-category = 1-category with a distinguished object,
- E_1 -monoidal 1-category = monoidal 1-category,
- E₂-monoidal 1-category = braided monoidal 1-category,
- E_{∞} -monoidal 1-category = symmetric monoidal 1-category.

In general, there are a total of n + 3 levels of E_m -monoidal *n*-categories.

The (n + 1)-categories Cat_n and $E_m \operatorname{Cat}_n$, $0 \le m \le \infty$ are symmetric monoidal under Cartesian product. The tensor unit is the trivial *n*-category.

Note that for $\mathcal{A}, \mathcal{B}, \mathfrak{C} \in \operatorname{Cat}_0,$ we have

 $\mathsf{Fun}(\mathcal{A} \times \mathcal{B}, \mathcal{C}) = \mathsf{Fun}(\mathcal{A}, \mathsf{Fun}(\mathcal{B}, \mathcal{C})).$

In general, for $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \operatorname{Cat}_n$, we have

 $\mathsf{Fun}(\mathcal{A} \times \mathcal{B}, \mathfrak{C}) = \mathsf{Fun}(\mathcal{A}, \mathsf{Fun}(\mathcal{B}, \mathfrak{C})).$

Hao Zheng

3. Duality

3. Duality

Definition

Let \mathbb{C} be an *n*-category containing two *k*-morphisms $f: X \to Y$ and $g: Y \to X$. We say that a *f* is left dual to *g* and say that *g* is right dual to *f*, if there exist (k + 1)-morphisms $u: \operatorname{Id}_X \to g \circ f$ and $v: f \circ g \to \operatorname{Id}_Y$ such that the composite (k + 1)-morphisms

 $f \simeq f \circ \operatorname{Id}_X \xrightarrow{u} f \circ g \circ f \xrightarrow{v} \operatorname{Id}_Y \circ f \simeq f,$

$$g \simeq \operatorname{Id}_X \circ g \xrightarrow{u} g \circ f \circ g \xrightarrow{v} g \circ \operatorname{Id}_Y \simeq g$$

are equivalent to the identities. We refer to u as the unit map and refer to v as the counit map of the duality. We also denote $g^{L} = f$ and $f^{R} = g$.

Remark

If f is inverse to g, then f is both left dual and right dual to g.

In an *n*-category, two *n*-morphisms are dual to each other if and only if they are inverse to each other.

Hao Zheng

Definition

We say that an *n*-category \mathbb{C} has duals, if every *k*-morphism has both a left dual and a right dual for $1 \le k < n$. We say that an E_0 -monoidal *n*-category ($\mathbb{C}, 1_{\mathbb{C}}$) has duals, if \mathbb{C} has duals. We say that an E_m -monoidal *n*-category \mathbb{C} has duals where $m \ge 1$, if the (n + 1)-category $B\mathbb{C}$ has duals.

Example

A functor $F : \mathcal{C} \to \mathcal{D}$ is left dual to $G : \mathcal{D} \to \mathcal{C}$ as 1-morphisms in Cat_n if and only if F is left adjoint to G, i.e. there exists a natural equivalence

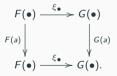
 $\operatorname{Hom}_{\mathcal{D}}(F(X), Y) \simeq \operatorname{Hom}_{\mathcal{C}}(X, G(Y)).$

Hao Zheng

4. Module *n*-categories

Let \mathcal{C} be a monoid and let $F : B\mathcal{C} \to \operatorname{Cat}_0$ be a functor. Unwinding the definition, we see that F consists of a set $F(\bullet) \in \operatorname{Cat}_0$ and a homomorphism of monoids $F : \mathcal{C} \to \operatorname{Fun}(F(\bullet), F(\bullet))$. That is, giving a functor $F : B\mathcal{C} \to \operatorname{Cat}_0$ is equivalent to giving a left \mathcal{C} -module $F(\bullet)$.

Let $\xi : F \to G$ be a natural transformation. Unwinding the definition, we see that ξ is a map $\xi_{\bullet} : F(\bullet) \to G(\bullet)$ rendering the following diagram commutative for all $a \in C$



That is, giving a natural transformation $\xi: F \to G$ is equivalent to giving a left C-module map $\xi_{\bullet}: F(\bullet) \to G(\bullet)$.

Therefore, $Fun(BC, Cat_0)$ is the 1-category of left C-modules and module maps.

Hao Zheng

4. Module *n*-categories

Definition

For a monoidal *n*-category \mathbb{C} , the (n + 1)-category $\mathsf{LMod}_{\mathbb{C}}(\mathsf{Cat}_n)$ of left \mathbb{C} -modules is defined to be $\mathsf{Fun}(B\mathbb{C}, \mathsf{Cat}_n)$ and the (n + 1)-category $\mathsf{RMod}_{\mathbb{C}}(\mathsf{Cat}_n)$ of right \mathbb{C} -modules is defined to be $\mathsf{Fun}(B\mathbb{C}^{\mathrm{rev}}, \mathsf{Cat}_n)$. We use $\mathsf{Fun}_{\mathbb{C}}(\mathcal{M}, \mathbb{N})$ to denote $\mathsf{Hom}_{\mathsf{LMod}_{\mathbb{C}}}(\mathsf{Cat}_n)(\mathcal{M}, \mathbb{N})$.

For monoidal *n*-categories \mathcal{C} and \mathcal{D} , the (n + 1)-category $\mathsf{BMod}_{\mathcal{C}|\mathcal{D}}(\operatorname{Cat}_n)$ of \mathcal{C} - \mathcal{D} -bimodules is defined to be $\mathsf{Fun}(\mathcal{BC},\mathsf{Fun}(\mathcal{BD}^{\operatorname{rev}},\operatorname{Cat}_n))$, which is equivalent to $\mathsf{LMod}_{\mathcal{C}\times\mathcal{D}^{\operatorname{rev}}}(\operatorname{Cat}_n)$. We use $\mathsf{Fun}_{\mathcal{C}|\mathcal{D}}(\mathcal{M}, \mathcal{N})$ to denote $\mathsf{Hom}_{\mathsf{BMod}_{\mathcal{C}|\mathcal{D}}}(\operatorname{Cat}_n)(\mathcal{M}, \mathcal{N})$.

5. Additive *n*-categories

Definition

An additive 0-category is an abelian group \mathcal{C} . A functor $F : \mathcal{C} \to \mathcal{D}$ between additive 0-categories is additive if it is a group homomorphism. We use $\operatorname{Cat}_{0}^{+}$ to denote the 1-category of additive 0-categories and additive functors, and use $\operatorname{Fun}^{+}(\mathcal{C}, \mathcal{D})$ to denote $\operatorname{Hom}_{\operatorname{Cat}^{+}}(\mathcal{C}, \mathcal{D})$.

Definition

Let \mathcal{C} be an *n*-category. We say that an object $X \in \mathcal{C}$ is initial if $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ is contractible for all $Y \in \mathcal{C}$. We say that $X \in \mathcal{C}$ is final if $\operatorname{Hom}_{\mathcal{C}}(Y, X)$ is contractible for all $Y \in \mathcal{C}$. We say that $X \in \mathcal{C}$ is zero if X is both initial and final. We say that a 1-morphism of \mathcal{C} is zero if it factors through a zero object.

A zero object of C is denote by 0. If C has a zero object, there exists a zero 1-morphism between any two objects of C. A zero 1-morphism is also denote by 0.

Definition

Let \mathcal{C} be an *n*-category. The product of two objects $X, Y \in \mathcal{C}$ is an object $X \times Y \in \mathcal{C}$ equipped with a natural equivalence $\operatorname{Hom}_{\mathcal{C}}(Z, X \times Y) \simeq \operatorname{Hom}_{\mathcal{C}}(Z, X) \times \operatorname{Hom}_{\mathcal{C}}(Z, Y)$ for $Z \in \mathcal{C}$. The coproduct of two objects $X, Y \in \mathcal{C}$ is an object $X \coprod Y \in \mathcal{C}$ equipped with a natural equivalence $\operatorname{Hom}_{\mathcal{C}}(X \coprod Y, Z) \simeq \operatorname{Hom}_{\mathcal{C}}(X, Z) \times \operatorname{Hom}_{\mathcal{C}}(Y, Z)$ for $Z \in \mathcal{C}$.

Remark

Giving a 1-morphism $Z \to X \times Y$ is equivalent to giving a pair of 1-morphism $Z \to X$ and $Z \to Y$. Giving a 1-morphism $X \coprod Y \to Z$ is equivalent to giving a pair of 1-morphism $X \to Z$ and $Y \to Z$.

There is a canonical 1-morphism $X \to X \times X$ and a canonical 1-morphism $X \coprod X \to X$.

If \mathcal{C} has a zero object 0, then $X \times 0 \simeq X \simeq X \coprod 0$ canonically.

Additive n-categories

Definition

We say that an *n*-category \mathbb{C} is quasi-additive if \mathbb{C} has a zero object and finite products as well as finite coproducts such that the canonical 1-morphism $X \coprod Y \to X \times Y$ is invertible for all $X, Y \in \mathbb{C}$. The coproduct $X \coprod Y$ is also denoted by $X \oplus Y$, referred to as the direct sum of X and Y.

Remark

The canonical 1-morphism $X \coprod Y \to X \times Y$ is determined by $X \coprod Y \xrightarrow{\operatorname{Id}_X \coprod 0} X \coprod 0 \simeq X$ and $X \coprod Y \xrightarrow{0 \coprod \operatorname{Id}_Y} 0 \coprod Y \simeq Y$.

Hao Zheng

Additive n-categories

If \mathcal{C} is a quasi-additive *n*-category, then Hom_{\mathcal{C}}(X, Y) carries a binary operation defined by

$$f + g : X \to X \times X \xrightarrow{f \times g} Y \times Y \simeq Y \coprod Y \to Y$$

for 1-morphisms $f, g : X \to Y$.

Proposition

We have
$$h \circ (f + g) \simeq h \circ f + h \circ g$$
 and $(f + g) \circ i \simeq f \circ i + g \circ i$ for $W \xrightarrow{i} X \xrightarrow{f,g} Y \xrightarrow{h} Z$.

Proof.

The first equivalence follows from the commutative diagram:

$$X \longrightarrow X \times X \xrightarrow{f \times g} Y \times Y \xleftarrow{\sim} Y \coprod Y \longrightarrow Y$$

$$h \circ f \times h \circ g \qquad \qquad \downarrow h \times h \qquad \qquad \downarrow h \amalg h \qquad \qquad \downarrow h \coprod h$$

$$Z \times Z \xleftarrow{\sim} Z \coprod Z \longrightarrow Z.$$

Additive n-categories

For n = 1, the binary operation $(f, g) \mapsto f + g$ endows $\operatorname{Hom}_{\mathbb{C}}(X, Y)$ with the structure of an abelian monoid.

Definition

We say that a 1-category \mathcal{C} is additive if it is quasi-additive and the abelian monoid $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ is an abelian group for any objects $X, Y \in \mathcal{C}$.

Definition

By induction on $n \ge 2$, we say that an *n*-category \mathcal{C} is additive if it is quasi-additive and $\text{Hom}_{\mathcal{C}}(X, Y)$ is additive for any objects $X, Y \in \mathcal{C}$ and the canonical 2-morphisms $f \coprod g \to f + g \to f \times g$ are invertible for any 1-morphisms $f, g: X \to Y$.

Remark

The canonical 2-morphism $f + g \to f \times g$ is determined by $f + g \xrightarrow{\operatorname{Id}_f + 0} f + 0 \simeq f$ and $f + g \xrightarrow{0+\operatorname{Id}_g} 0 + g \simeq g$, and similarly for $f \coprod g \to f + g$. Note that the composition $f \coprod g \to f + g \to f \times g$ agrees with the canonical one. Therefore, in an additive *n*-category, the binary operation + realizes \oplus on 2-morphisms.

Remark

By definition, if an *n*-category \mathcal{C} additive, then Hom_{\mathcal{C}}(X, Y) is also additive for $X, Y \in \mathcal{C}$.

Higher categories

5. Additive *n*-categories

Definition

A functor $F : \mathcal{C} \to \mathcal{D}$ between two additive *n*-categories is additive if *F* preserves finite products or, equivalently, finite coproducts.

We use Cat_n^+ to denote the subcategory of Cat_n formed by additive *n*-categories and additive functors, and use $\operatorname{Fun}^+(\mathcal{C}, \mathcal{D})$ to denote $\operatorname{Hom}_{\operatorname{Cat}_n^+}(\mathcal{C}, \mathcal{D})$.

Proposition

If $F : \mathbb{C} \to \mathbb{D}$ is additive, then $F(f+g) \simeq F(f) + F(g)$ for $f, g : X \to Y$. That is, $F : \operatorname{Hom}_{\mathbb{C}}(X, Y) \to \operatorname{Hom}_{\mathbb{D}}(F(X), F(Y))$ is also additive for $X, Y \in \mathbb{C}$.

Proof.

Selected topics on category theory

Hao Zheng

Proposition

The (n + 1)-category Cat_n^+ is additive, and the direct sum $\mathbb{C} \oplus \mathbb{D}$ is the Cartesian product $\mathbb{C} \times \mathbb{D}$.

Proof.

We have $(X, Y) \coprod (X', Y') = (X \coprod X', Y \coprod Y') \simeq (X \times X', Y \times Y') = (X, Y) \times (X', Y')$. Hence $(X, Y) \oplus (X', Y') = (X \oplus X', Y \oplus Y')$. This shows that $\mathcal{C} \times \mathcal{D}$ is additive.

In particular, $(X, 0) \oplus (0, Y) \simeq (X, Y)$. Therefore, $\operatorname{Fun}^+(\mathbb{C} \times \mathfrak{D}, \mathcal{E}) \simeq \operatorname{Fun}^+(\mathbb{C}, \mathcal{E}) \times \operatorname{Fun}^+(\mathfrak{D}, \mathcal{E})$. That is, $\mathbb{C} \times \mathfrak{D}$ is the coproduct of \mathbb{C} and \mathfrak{D} in Cat_{a}^+ . This shows that Cat_{a}^+ is quasi-additive.

For additive functors $F, G : \mathcal{C} \to \mathcal{D}$, we have $(F + G)(X) \simeq F(X) \oplus G(X) \simeq (F \oplus G)(X)$. This shows that Cat_n^+ is additive.

5. Additive *n*-categories

Definition

An additive monoidal *n*-category is a pair $(\mathcal{C}, \mathcal{BC})$ where \mathcal{BC} is an additive (n + 1)-category such that all objects are finite direct sums of a single object \bullet and $\mathcal{C} = \operatorname{Hom}_{\mathcal{BC}}(\bullet, \bullet)$. Additive E_m -monoidal *n*-categories are similarly defined. We use $E_m \operatorname{Cat}_n^+$ to denote the (n + 1)-category of additive E_m -monoidal *n*-categories and use $\operatorname{Fun}^{+E_m}(\mathcal{C}, \mathcal{D})$ to denote $\operatorname{Hom}_{E_m \operatorname{Cat}_n^+}(\mathcal{C}, \mathcal{D})$

Definition

For an additive monoidal *n*-category \mathbb{C} , the additive (n + 1)-category $\mathsf{LMod}_{\mathbb{C}}(\mathsf{Cat}_n^+)$ of additive left \mathbb{C} -modules is defined to be $\mathsf{Fun}^+(\mathcal{BC}, \mathsf{Cat}_n^+)$ and we use $\mathsf{Fun}^+_{\mathbb{C}}(\mathcal{M}, \mathbb{N})$ to denote $\mathsf{Hom}_{\mathsf{LMod}_{\mathbb{C}}(\mathsf{Cat}_n^+)}(\mathcal{M}, \mathbb{N})$. Categories of additive right modules and bimodules are defined similarly.

Example

An additive monoidal 0-category C is a ring and $LMod_C(Cat_0^+)$ is the additive 1-category of left C-modules and module maps. An additive symmetric monoidal 0-category C is a commutative ring.

For example, \mathcal{BC} is equivalent to the symmetric monoidal 1-category of finite-dimensional vector spaces over \mathbb{C} .

Hao Zheng

6. Linear *n*-categories

Let R be a commutative ring (for example, $\mathbb Z$ or $\mathbb C$) and view R as an additive symmetric monoidal 0-category.

Definition

The (n + 1)-category Cat_n^R of *R*-linear *n*-categories is defined to be $\operatorname{LMod}_{B^n R}(\operatorname{Cat}_n^+) = \operatorname{Fun}^+(B^{n+1}R, \operatorname{Cat}_n^+)$. We use $\operatorname{Fun}_R(\mathfrak{C}, \mathfrak{D})$ to denote $\operatorname{Hom}_{\operatorname{Cat}_n^R}(\mathfrak{C}, \mathfrak{D})$, the *R*-linear *n*-category formed by *R*-linear functors and *R*-linear (higher) natural transformations.

Example

(1) $\operatorname{Cat}_0^R = \operatorname{Fun}^+(BR, \operatorname{Cat}_0^+)$ is the 1-category of *R*-modules.

(2) $\operatorname{Cat}_n^{\mathbb{Z}} = \operatorname{Fun}^+(B^{n+1}\mathbb{Z}, \operatorname{Cat}_n^+) \simeq \operatorname{Cat}_n^+.$

Hao Zheng

6. Linear *n*-categories

Example

An *R*-linear 1-category is by definition an additive 1-category \mathcal{C} equipped with an additive monoidal functor $F: BR \to \operatorname{Fun}^+(\mathcal{C}, \mathcal{C})$. Note that $F(\bullet) = \operatorname{Id}_{\mathcal{C}}$ and we have a natural transformation $F(\lambda): \operatorname{Id}_{\mathcal{C}} \to \operatorname{Id}_{\mathcal{C}}$ for every $\lambda \in R$ such that $F(\lambda \mu) = F(\lambda) \circ F(\mu)$. We define $\lambda f = F(\lambda)_Y \circ f = f \circ F(\lambda)_X$ for 1-morphism $f: X \to Y$ of \mathcal{C} . Then $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ is promoted to an *R*-module. Moreover, $(\lambda g) \circ f = \lambda(g \circ f) = g \circ (\lambda f)$. Therefore, \mathcal{C} is promoted to a usual *R*-linear 1-category.

6. Linear *n*-categories

Definition

An *R*-linear monoidal *n*-category is a pair $(\mathcal{C}, \mathcal{BC})$ where \mathcal{BC} is an *R*-linear (n + 1)-category such that all objects are finite direct sums of a single object \bullet and $\mathcal{C} = \text{Hom}_{\mathcal{BC}}(\bullet, \bullet)$. An *R*-linear *E_m*-monoidal *n*-category is similarly defined. We use $E_m \text{Cat}_n^R$ to denote the (n + 1)-category of *R*-linear *E_m*-monoidal *n*-categories.

Definition

For an *R*-linear monoidal *n*-category \mathbb{C} , the *R*-linear (n+1)-category $\mathsf{LMod}_{\mathbb{C}}(\mathsf{Cat}_n^R)$ of *R*-linear left \mathbb{C} -modules is defined to be $\mathsf{Fun}_R(\mathcal{BC}, \mathsf{Cat}_n^R)$ and we use $\mathsf{Fun}_{\mathbb{C}}^R(\mathcal{M}, \mathbb{N})$ to denote $\mathsf{Hom}_{\mathsf{LMod}_{\mathbb{C}}(\mathsf{Cat}_n^R)}(\mathcal{M}, \mathbb{N})$. Categories of *R*-linear right modules and bimodules are defined similarly.

Example

An *R*-linear monoidal 0-category \mathcal{C} is a *R*-algebra and $LMod_{\mathcal{C}}(Cat_0^+)$ is the *R*-linear 1-category of left \mathcal{C} -modules and module maps. An *R*-linear symmetric monoidal 0-category \mathcal{C} is a commutative *R*-algebra.