A/2 has
$$2^{4} = 16$$
 singularities,
f each singularity is resolved by a rational line pl
S 5 is a k3 surface.
A obj \iff S obj.
(a by generalized do weighted phjentine space.
Catabi threefolds very important because of its role in
physics and Minnor symmetry
Open problem; classify all calabi-yaw threefolds.
Example: quintic threefolds. -5+5 = 0.
eg: $x_{0}^{5} + x_{1}^{5} + x_{2}^{5} + x_{3}^{5} + x_{4}^{5} = 0$, in \mathbb{P}^{4} .
Example: complete interaction of two whice fourfuls in 1ps
is a Calabi-yaw threefold. -6+3+3=0.
Example: (3.3) - hypersurface in $\mathbb{P}^{2} \times \mathbb{P}^{2}$.
Example: triple cover of $\mathbb{P}^{1} \times \mathbb{P}^{2}$ brenched along a
(3.3,3) - hypersurface.
Constructed from weighted projective space.

Generalized kummer construction:
start with
$$A$$
: torus of dimension 2.
Hilh^(H)(A) \longrightarrow A .
take sum
 $K^{n}(A) = Kernel of the above map.$
this is also a hyper-kähler mea of dim 2n.
Two exceptional cases: found by O'Grady.
 $OG_{6} = OG_{10}$.
This:
 $Deforming complex structure on a hyper-kähler \sim) still
hyper-Kähler.
These are all known examples up to now !
Hodge diamond.
 $X : CY threefold.$
 $H^{3}(X) = H^{2} \oplus H^{2/1} \oplus H^{1/2} \oplus H^{3/3}.$
 $1 = H^{2} \oplus = H^{1/2} \oplus H^{0/3}.$
 $H^{2}(X) = H^{2/0} \oplus H^{1/1} \oplus H^{0/2}.$
 $H^{1}(X) = D$ if X is simply connected.
Period map
Every compart Kähler manifold has a Hodge structure$

Sindler munifold has a Houge structure.

$$H^{n} = \bigoplus H^{p,q} \qquad H^{p,q} = H^{q,p}$$

$$F^{q=n}$$

Let
$$\mathfrak{X}$$
 be a "god" family of Kähler mfils,
 \mathfrak{B} [Roch fiber is a Kähler movieful)
 \mathfrak{B} "Moduli of Hodge structures".
Fix bo $\in \mathfrak{B}$, $\mathfrak{H}^{\mathsf{X}}(\mathfrak{X}_{\mathsf{b}})$.
for $\mathfrak{b} \in \mathfrak{B}$, \mathfrak{toke} a poth from \mathfrak{b} to $\mathfrak{b}_{\mathsf{o}}$,
 $\mathfrak{h}^{\mathsf{X}}(\mathfrak{X}_{\mathsf{b}}) \xrightarrow{\simeq} \mathfrak{H}^{\mathsf{X}}(\mathfrak{X}_{\mathsf{b}}_{\mathsf{o}})$,
 $\mathfrak{h}_{\mathsf{S}}$. $\mathfrak{h}_{\mathsf{o}} = \mathfrak{H}^{\mathsf{X}}(\mathfrak{X}_{\mathsf{b}}_{\mathsf{o}})$,
 $\mathfrak{h}_{\mathsf{S}}$. $\mathfrak{h}_{\mathsf{o}} = \mathfrak{h}^{\mathsf{X}}(\mathfrak{X}_{\mathsf{b}}_{\mathsf{o}})$,
 $\mathfrak{h}_{\mathsf{S}}$. $\mathfrak{h}_{\mathsf{o}} = \mathfrak{h}_{\mathsf{S}}(\mathfrak{X}_{\mathsf{b}})$,
 $\mathfrak{h}_{\mathsf{S}}$. $\mathfrak{h}_{\mathsf{o}} = \mathfrak{h}_{\mathsf{S}}(\mathfrak{X}_{\mathsf{b}}_{\mathsf{o}})$,
 $\mathfrak{h}_{\mathsf{S}}$. $\mathfrak{h}_{\mathsf{S}} = \mathfrak{h}_{\mathsf{o}} = \mathfrak{h}_{\mathsf{o}}(\mathfrak{X}_{\mathsf{b}}_{\mathsf{o}})$,
 $\mathfrak{h}_{\mathsf{S}}$, $\mathfrak{h}_{\mathsf{o}} = \mathfrak{h}_{\mathsf{o}}(\mathfrak{X}_{\mathsf{b}}_{\mathsf{o}})$,
 $\mathfrak{h}_{\mathsf{o}}$ inage of $\mathfrak{T}_{\mathsf{I}}(\mathfrak{B},\mathfrak{o}) \rightarrow \mathfrak{h}_{\mathsf{o}}(\mathfrak{h}_{\mathsf{f}}(\mathfrak{X}_{\mathsf{b}}_{\mathsf{o}}))$
then we have a well-defined map $\mathfrak{P}_{\mathsf{S}} = \mathfrak{B} \rightarrow \mathfrak{D}/\mathfrak{P}$.
called the period map of $\mathfrak{X}_{\mathsf{S}}$
 $\mathfrak{D}_{\mathsf{F}}$ is called the period domain.
Soy we have glober Toreth theorem for $\mathfrak{X}_{\mathsf{S}}$, if \mathfrak{P} is
injective
In our course, we will prove glober Toreth for ks. simples
We also aim to tolk about Vurbitsky, effort 's "glober Toreth"
for curboin hyper-Kähler monifields.

Connection, holonomy group.
De Rhom, Berger, decomposition theorem of Riemannian milds
Let M be a manufull,
$$E \rightarrow M$$
 a vertur bundle,
a connection ∇ on E is a linear map
 $\nabla: (\mathcal{O}(E) \rightarrow \mathcal{O}^{(0)}(E \otimes T^*M))$ satisfying:
 $\nabla(ue) = u \nabla(e) + e \otimes d \kappa$. Librity rule.
where $e \in \mathcal{O}^{(0)}(E)$, $u \in \mathcal{O}^{(0)}(M)$.
($\mathcal{O}(E)$: set of smooth sections of E over open subset of M
Another interpretation of connection.
take $X \in \mathcal{O}^{(0)}(TM)$, $\nabla_{X} : \int smooth sections of E over U .
 $\nabla_{X}(s) = T(s) \cdot X \cdot \mathcal{O}^{(0)}(E)$.
Connection ∇ , $-s$ linear map $T(M) \rightarrow Diff(E)$
Librity rule for the second interpretation.
 $X \in \mathcal{O}^{(0)}(TM), \nabla_{X}(ue) = u \nabla_{X}e + (Xu) \cdot e$.
 $u \in \mathcal{O}^{(0)}(TM), \nabla_{X}(ue) = u \nabla_{X}e + (Xu) \cdot e$.$

Stort with
$$\underset{M}{\overset{W}{=}}$$
 and a connection ∇ .
fix a fiber $\underset{D}{\overset{W}{=}}$ for $b \in M$.
take any fiber $\underset{D}{\overset{W}{=}}$ for $b \in M$.
 $\underset{D}{\overset{W}{=}}$ fiber $\underset{D}{\overset{W}{=}}$ for $b \in M$.
 $\underset{D}{\overset{W}{=}}$ fiber $\underset{D}{\overset{W}{=}}$ for $b \in M$.
 $\underset{D}{\overset{W}{=}}$ fiber $\underset{D}{\overset{W}{=}}$ for $fire b \in M$.
 $\underset{D}{\overset{W}{=}}$ fiber $\underset{D}{\overset{W}{=}}$ for γ .
 $\overbrace{D}{\overset{W}{=}}$ field $\overset{W}{=}$ for ∇ .
 $\overset{W}{=}$ field on γ .
 $\overset{W}{=}$ of $\underset{D}{\overset{W}{=}}$ for γ .
 $\overset{W}{=}$ obtain a linear map $\underset{D}{\overset{W}{=}}$ for ∇ .
 $\overset{W}{=}$ field on γ .
 $\overset{W}{=}$ obtain a linear map $\underset{D}{\overset{W}{=}}$ for ∇ .
 $\overset{W}{=}$ a bunch of linear isomorphisms $\underset{D}{\overset{W}{=}}$ $\overset{W}{=}$ $\overset{W}{=}$

they form a subgroup of
$$GL(E_{bo})$$
,
(alled the holoromy group of (E, ∇) .